Emulsion patterns in the wake of a liquid-liquid phase separation front

被引:26
作者
Moerman, Pepijn G. [1 ,2 ]
Hohenberg, Pierre C. [1 ]
Vanden-Eijnden, Eric [3 ]
Brujic, Jasna [1 ]
机构
[1] NYU, Dept Phys, Ctr Soft Matter Res, 4 Washington Pl, New York, NY 10003 USA
[2] Univ Utrecht, Debye Inst Nanomat Sci, NL-3584 Utrecht, Netherlands
[3] NYU, Courant Inst Math Sci, 251 Mercer St, New York, NY 10012 USA
基金
美国国家科学基金会;
关键词
multilayered emulsion; Allen-Cahn; Cahn-Hilliard; spinodal decomposition; self-organization; MULTIPLE EMULSIONS; SIMULTANEOUS ENCAPSULATION; COMPLEX EMULSIONS; MICROFLUIDICS; INSTABILITIES; EQUILIBRIUM; NUCLEATION; MIXTURES;
D O I
10.1073/pnas.1716330115
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Miscible liquids can phase separate in response to a composition change. In bulk fluids, the demixing begins on molecular-length scales, which coarsen into macroscopic phases. By contrast, confining a mixture in microfluidic droplets causes sequential phase separation bursts, which self-organize into rings of oil and water to make multilayered emulsions. The spacing in these nonequilibrium patterns is self-similar and scale-free over a range of droplet sizes. We develop a modified Cahn-Hilliard model, in which an immiscibility front with stretched exponential dynamics quantitatively predicts the spacing of the layers. In addition, a scaling law predicts the lifetime of each layer, giving rise to a stepwise release of inner droplets. Analogously, in long rectangular capillaries, a diffusive front yields large-scale oil and water stripes on the time scale of hours. The same theory relates their characteristic length scale to the speed of the front and the rate of mass transport. Control over liquid-liquid phase separation into large-scale patterns finds potential material applications in living cells, encapsulation, particulate design, and surface patterning.
引用
收藏
页码:3599 / 3604
页数:6
相关论文
共 35 条
[11]   Enslaved phase-separation fronts in one-dimensional binary mixtures [J].
Foard, E. M. ;
Wagner, A. J. .
PHYSICAL REVIEW E, 2009, 79 (05)
[12]   Hopf Bifurcation from Fronts in the Cahn-Hilliard Equation [J].
Goh, Ryan ;
Scheel, Arnd .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 217 (03) :1219-1263
[13]   Tailoring of High-Order Multiple Emulsions by the Liquid-Liquid Phase Separation of Ternary Mixtures [J].
Haase, Martin F. ;
Brujic, Jasna .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2014, 53 (44) :11793-11797
[14]   Formation and lateral migration of nanodroplets via solvent shifting in a microfluidic device [J].
Hajian, Ramin ;
Hardt, Steffen .
MICROFLUIDICS AND NANOFLUIDICS, 2015, 19 (06) :1281-1296
[15]   An introduction to the Ginzburg-Landau theory of phase transitions and nonequilibrium patterns [J].
Hohenberg, P. C. ;
Krekhov, A. P. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2015, 572 :1-42
[16]   THEORY OF DYNAMIC CRITICAL PHENOMENA [J].
HOHENBERG, PC ;
HALPERIN, BI .
REVIEWS OF MODERN PHYSICS, 1977, 49 (03) :435-479
[17]   Multifunctional Nanocapsules for Simultaneous Encapsulation of Hydrophilic and Hydrophobic Compounds and On-Demand Release [J].
Hu, Shang-Hsiu ;
Chen, San-Yuan ;
Gao, Xiaohu .
ACS NANO, 2012, 6 (03) :2558-2565
[18]   Beyond Oil and Water-Phase Transitions in Cells [J].
Hyman, Anthony A. ;
Simons, Kai .
SCIENCE, 2012, 337 (6098) :1047-1049
[19]   INSTABILITIES AND PATTERN-FORMATION IN CRYSTAL-GROWTH [J].
LANGER, JS .
REVIEWS OF MODERN PHYSICS, 1980, 52 (01) :1-28
[20]  
Liesegang R.E., 1896, NATURWISS WOCHENSCHR, V10, P353, DOI DOI 10.1007/BF01830142