Superfluid density and two-component conductivity in hole-doped cuprates

被引:7
作者
Ayres, Jake [1 ]
Katsnelson, Mikhail I. [2 ]
Hussey, Nigel E. [1 ,2 ,3 ]
机构
[1] Univ Bristol, HH Wills Phys Lab, Bristol, England
[2] Radboud Univ Nijmegen, Inst Mol & Mat, Nijmegen, Netherlands
[3] Radboud Univ Nijmegen, HFML FELIX, Nijmegen, Netherlands
来源
FRONTIERS IN PHYSICS | 2022年 / 10卷
基金
英国工程与自然科学研究理事会; 欧洲研究理事会;
关键词
superconductivity; cuprates; pseudogap; magnetotransport; hubbard model; QUANTUM OSCILLATIONS; FERMI-LIQUID; TEMPERATURE; PSEUDOGAP; STATE; FIELD; DEPENDENCE; TRANSPORT; ENERGY;
D O I
10.3389/fphy.2022.1021462
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
While the pseudogap dominates the phase diagram of hole-doped cuprates, connecting the antiferromagnetic parent insulator at low doping to the strange metal at higher doping, its origin and relation to superconductivity remains unknown. In order to proceed, a complete understanding of how the single hole-initially localized in the Mott state-becomes mobile and ultimately evolves into a coherent quasiparticle at the end of the superconducting dome is required. In order to affect this development, we examine recent transport and spectroscopic studies of hole-doped cuprates across their phase diagram. In the process, we highlight a set of empirical correlations between the superfluid density and certain normal state properties of hole-doped cuprates that offer fresh insights into the emergence of metallicity within the CuO2 plane and its influence on the robustness of the superconducting state. We conclude by arguing that the overall behavior is best understood in terms of two distinct current-carrying fluids, only one of which dominates the superconducting condensate and is gapped out below the pseudogap endpoint at a critical hole concentration p*.
引用
收藏
页数:9
相关论文
共 64 条
[1]   Anisotropic scattering and anomalous normal-state transport in a high-temperature superconductor [J].
Abdel-Jawad, M. ;
Kennett, M. P. ;
Balicas, L. ;
Carrington, A. ;
Mackenzie, A. P. ;
McKenzie, R. H. ;
Hussey, N. E. .
NATURE PHYSICS, 2006, 2 (12) :821-825
[2]  
Abrikosov A. A., 1963, METHODS QUANTUM FIEL
[3]   LDA energy bands, low-energy Hamiltonians, t', t'', t perpendicular to(k), and J perpendicular to. [J].
Andersen, OK ;
Liechtenstein, AI ;
Jepsen, O ;
Paulsen, F .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 1995, 56 (12) :1573-1591
[4]   Evolution of the Hall coefficient and the peculiar electronic structure of the cuprate superconductors [J].
Ando, Y ;
Kurita, Y ;
Komiya, S ;
Ono, S ;
Segawa, K .
PHYSICAL REVIEW LETTERS, 2004, 92 (19) :197001-1
[5]  
Ataei A, 2022, Arxiv, DOI arXiv:2203.05035
[6]   Incoherent transport across the strange-metal regime of overdoped cuprates [J].
Ayres, J. ;
Berben, M. ;
Culo, M. ;
Hsu, Y-T ;
van Heumen, E. ;
Huang, Y. ;
Zaanen, J. ;
Kondo, T. ;
Takeuchi, T. ;
Cooper, J. R. ;
Putzke, C. ;
Friedemann, S. ;
Carrington, A. ;
Hussey, N. E. .
NATURE, 2021, 595 (7869) :661-+
[7]   Change of carrier density at the pseudogap critical point of a cuprate superconductor [J].
Badoux, S. ;
Tabis, W. ;
Laliberte, F. ;
Grissonnanche, G. ;
Vignolle, B. ;
Vignolles, D. ;
Beard, J. ;
Bonn, D. A. ;
Hardy, W. N. ;
Liang, R. ;
Doiron-Leyraud, N. ;
Taillefer, Louis ;
Proust, Cyril .
NATURE, 2016, 531 (7593) :210-+
[8]   Electrodynamics of correlated electron materials [J].
Basov, D. N. ;
Averitt, Richard D. ;
van der Marel, Dirk ;
Dressel, Martin ;
Haule, Kristjan .
REVIEWS OF MODERN PHYSICS, 2011, 83 (02) :471-541
[9]  
Berben M, 2022, Arxiv, DOI arXiv:2203.04867
[10]   Superconducting dome and pseudogap endpoint in Bi2201 [J].
Berben, M. ;
Smit, S. ;
Duffy, C. ;
Hsu, Y-T ;
Bawden, L. ;
Heringa, F. ;
Gerritsen, F. ;
Cassanelli, S. ;
Feng, X. ;
Bron, S. ;
van Heumen, E. ;
Huang, Y. ;
Bertran, F. ;
Kim, T. K. ;
Cacho, C. ;
Carrington, A. ;
Golden, M. S. ;
Hussey, N. E. .
PHYSICAL REVIEW MATERIALS, 2022, 6 (04)