An exact approach for the maximum concurrent k-splittable flow problem

被引:9
作者
Caramia, Massimiliano [1 ]
Sgalambro, Antonino [2 ]
机构
[1] Univ Roma Tor Vergata, Dipartimento Ingn Impresa, I-00133 Rome, Italy
[2] Univ Naples Federico II, Dipartimento Ingn Econ Gest, I-80125 Naples, Italy
关键词
k-splittable flow; Branch and bound; Mixed integer programming; Multicommodity; Throughput;
D O I
10.1007/s11590-007-0055-4
中图分类号
C93 [管理学]; O22 [运筹学];
学科分类号
070105 ; 12 ; 1201 ; 1202 ; 120202 ;
摘要
We consider the maximization of a multicommodity flow throughput in presence of constraints on the maximum number of paths to be used. Such an optimization problem is strongly NP-hard, and is known in the literature as the maximum routable demand fraction variant of the k-splittable flow problem. Here we propose an exact approach based on branch and bound rules and on an arc-flow mixed integer programming formulation of the problem. Computational results are provided, and a comparison with a standard commercial solver is proposed.
引用
收藏
页码:251 / 265
页数:15
相关论文
共 20 条
[1]  
Andrews M., 2005, P 37 ANN ACM S THEOR
[2]  
AZAR Y, 2001, P 8 C INT PROGR COMB, P15
[3]  
BADICS T, GENRMF
[4]   The k-splittable flow problem [J].
Baier, G ;
Köhler, E ;
Skutella, M .
ALGORITHMICA, 2005, 42 (3-4) :231-248
[5]  
BAIER G, 2003, THESIS TU BERLIN
[6]   Asymptotic analysis of the flow deviation method for the maximum concurrent flow problem [J].
Bienstock, D ;
Raskina, O .
MATHEMATICAL PROGRAMMING, 2002, 91 (03) :479-492
[7]   On the approximation of the single source k-splittable flow problem [J].
Caramia, Massimiliano ;
Sgalambro, Antonino .
JOURNAL OF DISCRETE ALGORITHMS, 2008, 6 (02) :277-289
[8]  
CHUZHOY J, 2004, P 36 ANN ACM S THEOR, P28
[9]   On the single-source unsplittable flow problem [J].
Dinitz, Y ;
Garg, N ;
Goemans, MX .
COMBINATORICA, 1999, 19 (01) :17-41
[10]  
Goldfarb D., 1988, Annals of Operations Research, V13, P83