Cohomology of line bundles on horospherical varieties

被引:0
作者
Bonala, Narasimha Chary [1 ,2 ]
Dejoncheere, Benoit [3 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, Bonn, Germany
[2] Ruhr Univ Bochum, Fak Math, Bochum, Germany
[3] Univ Alberta, Dept Math & Stat Sci, Edmonton, AB T6G 2G1, Canada
关键词
Grothendieck-Cousin complexes; Horospherical varieties; Local cohomology;
D O I
10.1007/s00209-019-02454-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A horospherical variety is a normal algebraic variety where a connected reductive algebraic group acts with an open orbit isomorphic to a torus bundle over a flag variety. In this article we study the cohomology of line bundles on complete horospherical varieties. The main tool in this article is the machinery of Grothendieck-Cousin complexes, and we also prove a Kunneth-like formula for local cohomology.
引用
收藏
页码:525 / 540
页数:16
相关论文
共 29 条
[1]  
[Anonymous], 1980, Rocky Mountain J. Math.
[2]   HOMOGENEOUS VECTOR BUNDLES [J].
BOTT, R .
ANNALS OF MATHEMATICS, 1957, 66 (02) :203-248
[3]   VALUATIONS OF SPHERICAL HOMOGENEOUS SPACES [J].
BRION, M ;
PAUER, F .
COMMENTARII MATHEMATICI HELVETICI, 1987, 62 (02) :265-285
[4]   SOME PROPERTIES OF HOMOGENEOUS SPHERICAL SPACES [J].
BRION, M .
MANUSCRIPTA MATHEMATICA, 1986, 55 (02) :191-198
[5]   REPRESENTATIONS OF REDUCTIVE GROUPS IN COHOMOLOGY SPACES [J].
BRION, M .
MATHEMATISCHE ANNALEN, 1994, 300 (04) :589-604
[6]   EXTENSION OF THE BOREL-WEIL THEOREM [J].
BRION, M .
MATHEMATISCHE ANNALEN, 1990, 286 (04) :655-660
[7]   PICARD GROUP AND EIGENVALUES OF SPHERICAL MANIFOLDS [J].
BRION, M .
DUKE MATHEMATICAL JOURNAL, 1989, 58 (02) :397-424
[8]  
Cox D.A., 2011, Toric Varieties
[9]   VERY SIMPLE PROOF OF BOTTS THEOREM [J].
DEMAZURE, M .
INVENTIONES MATHEMATICAE, 1976, 33 (03) :271-272
[10]  
DEMAZURE M, 1970, ANN SCI ECOLE NORM S, V3, P507