Cyclic cohomology of Hopf algebras

被引:34
作者
Crainic, M [1 ]
机构
[1] Univ Utrecht, Dept Math, NL-3580 TA Utrecht, Netherlands
关键词
D O I
10.1016/S0022-4049(01)00007-X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a construction of the Connes-Moscovici cyclic cohomology for any Hopf algebra equipped with a character (solving the technical problem raised in Connes and Moscovici (Comm. Math. Phys, 198 (1998) 199-246)). Furthermore, we introduce a non-commutative Weil complex, which connects the work of Gelfand and Smirnov with cyclic cohomology. We show how the Weil complex arises naturally when looking at Hopf algebra actions and invariant higher traces, to give a non-commutative version of the usual Chem-Weil theory. (C) 2002 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:29 / 66
页数:38
相关论文
共 20 条
[1]  
Brylinski J.-L., 1994, K-Theory, V8, P341, DOI 10.1007/BF00961407
[2]  
Cartan H., 1950, C TOPOLOGIE, P15
[3]   Hopf algebras, cyclic cohomology and the transverse index theorem [J].
Connes, A ;
Moscovici, H .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1998, 198 (01) :199-246
[4]  
CONNES A, 1980, CR ACAD SCI A MATH, V290, P599
[5]  
CONNES A, 1983, CR ACAD SCI I-MATH, V296, P953
[6]   Cyclic cohomology of etale groupoids: The general case [J].
Crainic, M .
K-THEORY, 1999, 17 (04) :319-362
[7]   CYCLIC HOMOLOGY AND NONSINGULARITY [J].
CUNTZ, J ;
QUILLEN, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :373-442
[8]   Excision in bivariant periodic cyclic cohomology [J].
Cuntz, J ;
Quillen, D .
INVENTIONES MATHEMATICAE, 1997, 127 (01) :67-98
[9]   ALGEBRA EXTENSIONS AND NONSINGULARITY [J].
CUNTZ, JC ;
QUILLEN, D .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1995, 8 (02) :251-289
[10]   CYCLIC HOMOLOGY, DERIVATIONS, AND THE FREE LOOPSPACE [J].
GOODWILLIE, TG .
TOPOLOGY, 1985, 24 (02) :187-215