Cohomology of D-complex manifolds

被引:5
作者
Angella, Daniele [2 ]
Rossi, Federico Alberto [1 ]
机构
[1] Univ Milano Bicocca, Dipartimento Matemat & Applicaz, I-20125 Milan, Italy
[2] Univ Pisa, Dipartimento Matemat Leonida Tonelli, I-56127 Pisa, Italy
关键词
C-infinity-pure-and-full structure; Para-complex structure; D-complex structure; D-Kahler; Nilmanifold; Cohomology; Deformation; DEFORMATIONS;
D O I
10.1016/j.difgeo.2012.07.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to look for a well-behaved counterpart to Dolbeault cohomology in D-complex geometry, we study the de Rham cohomology of an almost D-complex manifold and its subgroups made up of the classes admitting invariant, respectively anti-invariant, representatives with respect to the almost D-complex structure, miming the theory introduced by Li and Zhang (2009) in [20] for almost complex manifolds. In particular, we prove that, on a 4-dimensional D-complex nilmanifold, such subgroups provide a decomposition at the level of the real second de Rham cohomology group. Moreover, we study deformations of D-complex structures, showing in particular that admitting D-Kahler structures is not a stable property under small deformations. (C) 2012 Elsevier B.V. All rights reserved.
引用
收藏
页码:530 / 547
页数:18
相关论文
共 24 条
  • [1] Homogeneous para-Kahler Einstein manifolds
    Alekseevsky, D. V.
    Medori, C.
    Tomassini, A.
    [J]. RUSSIAN MATHEMATICAL SURVEYS, 2009, 64 (01) : 1 - 43
  • [2] Product structures on four dimensional solvable Lie algebras
    Andrada, A.
    Barberis, M. L.
    Dotti, I. G.
    Ovando, G. P.
    [J]. HOMOLOGY HOMOTOPY AND APPLICATIONS, 2005, 7 (01) : 9 - 37
  • [3] ON THE COHOMOLOGY OF ALMOST-COMPLEX MANIFOLDS
    Angella, Daniele
    Tomassini, Adriano
    [J]. INTERNATIONAL JOURNAL OF MATHEMATICS, 2012, 23 (02)
  • [4] Angella D, 2011, J SYMPLECT GEOM, V9, P403
  • [5] Bock C., ARXIV09032926V4MATHD
  • [6] Cortés V, 2004, J HIGH ENERGY PHYS
  • [7] Cruceanu V, 1996, ROCKY MT J MATH, V26, P83, DOI 10.1216/rmjm/1181072105
  • [8] de Rham G., 1984, DIFFERENTIABLE MANIF, V266
  • [9] Draghici T., GEOMETRY TAMED ALMOS, V4
  • [10] Symplectic Forms and Cohomology Decomposition of almost Complex Four-Manifolds
    Draghici, Tedi
    Li, Tian-Jun
    Zhang, Weiyi
    [J]. INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2010, 2010 (01) : 1 - 17