IMPROVING SKIN LESION SEGMENTATION IN DERMOSCOPIC IMAGES BY THIN ARTEFACTS REMOVAL METHODS

被引:7
作者
Majtner, Toma [1 ]
Lidayova, Kristina [2 ]
Yildirim-Yayilgan, Sule [1 ]
Hardeberg, Jon Yngve [1 ]
机构
[1] NTNU Norwegian Univ Sci & Technol, Fac Comp Sci & Media Technol, Gjovik, Norway
[2] Uppsala Univ, Ctr Image Anal CBA, Dept Informat Technol, Div Visual Informat & Interact, Uppsala, Sweden
来源
PROCEEDINGS OF THE 2016 6TH EUROPEAN WORKSHOP ON VISUAL INFORMATION PROCESSING (EUVIP) | 2016年
关键词
thin artefacts removal; skin lesion segmentation; dermoscopic images; Chan-Vese segmentation; expectation-maximization segmentation; HAIR REMOVAL; BORDER DETECTION; ALGORITHM;
D O I
10.1109/EUVIP.2016.7764580
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In dermoscopic images, various thin artefacts naturally appear, most usually in the form of hairs. While trying to find the border of the skin lesion, these artefacts effect the lesion segmentation methods and also the subsequent classification. Currently, there is a lot of research focus in this area and various methods are presented both for skin lesion segmentation and thin artefacts removal. In this paper, we investigate into three different thin artefacts removal methods and compare their results using two different skin lesion segmentation methods. The segmentation results are compared with ground truth segmentation. In addition, we introduce our novel artefacts removal method, which combined with the Expectation Maximization image segmentation outperforms all the tested methods.
引用
收藏
页数:6
相关论文
共 28 条
  • [1] Unsupervised skin lesions border detection via two-dimensional image analysis
    Abbas, Qaisar
    Fondon, Irene
    Rashid, Muhammad
    [J]. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2011, 104 (03) : E1 - E15
  • [2] Hair removal methods: A comparative study for dermoscopy images
    Abbas, Qaisar
    Celebi, M. E.
    Fondon Garcia, Irene
    [J]. BIOMEDICAL SIGNAL PROCESSING AND CONTROL, 2011, 6 (04) : 395 - 404
  • [3] Ahn E, 2015, IEEE ENG MED BIO, P3009, DOI 10.1109/EMBC.2015.7319025
  • [4] [Anonymous], COL VIS COMP S
  • [5] Beuren A. T., 2012, 2012 International Conference on Systems, Signals and Image Processing (IWSSIP), P284
  • [6] Borys D, 2015, LECT N BIOINFORMAT, V9043, P262, DOI 10.1007/978-3-319-16483-0_27
  • [7] Smooth Chan-Vese segmentation via graph cuts
    Danek, Ondrej
    Matula, Pavel
    Maska, Martin
    Kozubek, Michal
    [J]. PATTERN RECOGNITION LETTERS, 2012, 33 (10) : 1405 - 1410
  • [8] MAXIMUM LIKELIHOOD FROM INCOMPLETE DATA VIA EM ALGORITHM
    DEMPSTER, AP
    LAIRD, NM
    RUBIN, DB
    [J]. JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-METHODOLOGICAL, 1977, 39 (01): : 1 - 38
  • [9] Fiorese M, 2011, IEEE ENG MED BIO, P5145, DOI 10.1109/IEMBS.2011.6091274
  • [10] George Y., 2015, INT C DIG IM COMP TE, P1