Existence and Exponential Stability for a Euler-Bernoulli Beam Equation with Memory and Boundary Output Feedback Control Term

被引:29
作者
Park, Jong Yeoul [3 ]
Kang, Yong Han [2 ]
Kim, Jung Ae [1 ]
机构
[1] Natl Inst Math Sci, Taejon, South Korea
[2] Univ Ulsan, Dept Math, Ulsan 680749, South Korea
[3] Pusan Natl Univ, Coll Sci, Dept Math, Pusan 609735, South Korea
关键词
Existence of solution; Dynamic feedback stabilization; Euler-Bernoulli beam equation; Output feedback control term; Memory term; Galerkin method;
D O I
10.1007/s10440-008-9257-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we consider the Euler-Bernoulli beam equation with memory and boundary output feedback control term. We prove the existence of solutions using the Galerkin method and then investigate the exponential stability of solutions by using multiplier technique.
引用
收藏
页码:287 / 301
页数:15
相关论文
共 16 条
[1]   On the stabilization of a flexible beam with a tip mass [J].
Conrad, F ;
Morgul, O .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1998, 36 (06) :1962-1986
[3]  
FEIREISL E, 1993, ANN SCUOLA NORMALE S, V20, P133
[4]   Adaptive stabilization for a Kirchhoff-type nonlinear beam under boundary output feedback control [J].
Guo, Bao-Zhu ;
Guo, Wei .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2007, 66 (02) :427-441
[5]  
Kirane M., 1999, ELECTRON J QUAL THEO, V6, P1
[6]   UNIFORM STABILIZATION OF A NONLINEAR BEAM BY NONLINEAR BOUNDARY FEEDBACK [J].
LAGNESE, JE ;
LEUGERING, G .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1991, 91 (02) :355-388
[7]   EXPONENTIAL DECAY-RATES FOR THE SOLUTIONS OF EULER-BERNOULLI EQUATIONS WITH BOUNDARY DISSIPATION OCCURRING IN THE MOMENTS ONLY [J].
LASIECKA, I .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1992, 95 (01) :169-182
[8]  
Ma H., 1992, DIFFER INTEGRAL EQU, V5, P1121
[9]   Existence results for a model of nonlinear beam on elastic bearings [J].
Ma, TF .
APPLIED MATHEMATICS LETTERS, 2000, 13 (05) :11-15
[10]  
Ma TF, 2001, MATH METHOD APPL SCI, V24, P583