Refractory-Metal Diffusion Inhibitors Slow Erosion of Catalytic Metal Particles in the growth of Carbon Nanotubes

被引:1
作者
Bronikowski, Michael J. [1 ]
King, Melissa [1 ]
机构
[1] Univ Tampa, Dept Chem Biochem & Phys, 401 W Kennedy Blvd, Tampa, FL 33606 USA
关键词
CHEMICAL-VAPOR-DEPOSITION; ARRAYS; MECHANISM; YARNS;
D O I
10.1557/adv.2018.666
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Catalytic growth of substantial amounts of Carbon Nanotubes (CNTs) to lengths greater than 1 - 2 cm is currently limited by several factors, including especially the deactivation of the catalyst particles due to erosion of catalyst atoms from the catalyst particles at elevated CNT growth temperatures. Inclusion of refractory metals in the CNT growth catalyst has recently been proposed as a method to prevent this catalytic particle erosion and deactivation, allowing the CNT to grow for greater times and reach substantially greater lengths. Here are presented results of recent investigations into this method. The system investigated employs Molybdenum as the erosion inhibitor and Iron as the CNT growth catalyst. Results show that inclusion of Mo leads to substantially longer catalyst particle lifetimes.
引用
收藏
页码:197 / 204
页数:8
相关论文
共 22 条
[1]   Multifunctional carbon nanotube yarns and transparent sheets: Fabrication, properties, and applications [J].
Atkinson, Ken R. ;
Hawkins, Stephen C. ;
Huynh, Chi ;
Skourtis, Chris ;
Dai, Jane ;
Zhang, Mei ;
Fang, Shaoli ;
Zakhidov, Anvar A. ;
Lee, Sergey B. ;
Aliev, Ali E. ;
Williams, Christopher D. ;
Baughman, Ray H. .
PHYSICA B-CONDENSED MATTER, 2007, 394 (02) :339-343
[2]   Longer nanotubes at lower temperatures: The influence of effective activation energies on carbon nanotube growth by thermal chemical vapor deposition [J].
Bronikowski, Michael J. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2007, 111 (48) :17705-17712
[3]   Use of refractory-metal diffusion inhibitors to slow Ostwald ripening of catalytic metal particles: A route to ultra-long Carbon Nanotubes (CNT) [J].
Bronikowski, Michael J. .
CARBON, 2016, 107 :297-303
[4]  
Cassell AM, 1999, J PHYS CHEM B, V103, P6484, DOI 10.1021/jp990957sCCC:$18.00
[5]   Growth and characterization of vertically aligned centimeter long CNT arrays [J].
Cho, Wondong ;
Schulz, Mark ;
Shanot, Vesselin .
CARBON, 2014, 72 :264-273
[6]   Growth behavior of carbon nanotubes on multilayered metal catalyst film in chemical vapor deposition [J].
Cui, H ;
Eres, G ;
Howe, JY ;
Puretkzy, A ;
Varela, M ;
Geohegan, DB ;
Lowndes, DH .
CHEMICAL PHYSICS LETTERS, 2003, 374 (3-4) :222-228
[7]   Single-wall nanotubes produced by metal-catalyzed disproportionation of carbon monoxide [J].
Dal, HJ ;
Rinzler, AG ;
Nikolaev, P ;
Thess, A ;
Colbert, DT ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1996, 260 (3-4) :471-475
[8]   Kinetics of water-assisted single-walled carbon nanotube synthesis revealed by a time-evolution analysis [J].
Futaba, DN ;
Hata, K ;
Yamada, T ;
Mizuno, K ;
Yumura, M ;
Iijima, S .
PHYSICAL REVIEW LETTERS, 2005, 95 (05)
[9]   Catalytic growth of single-wall carbon nanotubes from metal particles [J].
Hafner, JH ;
Bronikowski, MJ ;
Azamian, BR ;
Nikolaev, P ;
Rinzler, AG ;
Colbert, DT ;
Smith, KA ;
Smalley, RE .
CHEMICAL PHYSICS LETTERS, 1998, 296 (1-2) :195-202
[10]   Growth mechanism of oriented long single walled carbon nanotubes using "fast-heating" chemical vapor deposition process [J].
Huang, SM ;
Woodson, M ;
Smalley, R ;
Liu, J .
NANO LETTERS, 2004, 4 (06) :1025-1028