Discontinuous Galerkin approximation with discrete variational principle for the nonlinear Laplacian

被引:32
作者
Burman, Erik [1 ]
Ern, Alexandre [2 ]
机构
[1] Univ Sussex, Dept Math, Brighton BN1 9RF, E Sussex, England
[2] Univ Paris Est, CERMICS, Ecole Ponts, F-77455 Marne La Vallee 2, France
关键词
D O I
10.1016/j.crma.2008.07.005
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A discontinuous Galerkin method is analyzed to approximate the nonlinear Laplacian model problem. The salient feature of the proposed scheme is that it is endowed with a discrete variational principle. The convergence of the discrete approximations to the exact solution is proven. To cite this article: E. Burman, A. Ern, C R. Acad. Sci. Paris, Ser. I 346 (2008). (C) 2008 Academie des sciences. Published by Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:1013 / 1016
页数:4
相关论文
共 8 条
[1]  
[Anonymous], 2002, FINITE ELEMENT METHO
[2]   FINITE-ELEMENT APPROXIMATION OF THE P-LAPLACIAN [J].
BARRETT, JW ;
LIU, WB .
MATHEMATICS OF COMPUTATION, 1993, 61 (204) :523-537
[3]   A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions [J].
Bustinza, R ;
Gatica, GN .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2004, 26 (01) :152-177
[5]  
DIPIETRO DA, 2008, 00278925 HAL
[6]  
GLOWINSKI R, 1975, REV FR AUTOMAT INFOR, V9, P41
[7]  
Liu WB, 2001, NUMER MATH, V89, P341, DOI 10.1007/s002110100252
[8]   Discontinuous Galerkin methods for non-linear elasticity [J].
Ten Eyck, A. ;
Lew, A. .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2006, 67 (09) :1204-1243