Adaptive Elastic Echo State Network for Multivariate Time Series Prediction

被引:105
|
作者
Xu, Meiling [1 ]
Han, Min [1 ]
机构
[1] Dalian Univ Technol, Fac Elect Informat & Elect Engn, Liaoning 116023, Peoples R China
基金
中国国家自然科学基金;
关键词
Adaptive elastic net; echo state network (ESN); multivariate chaotic time series; prediction; NEURAL-NETWORKS; RESERVOIR; SELECTION; MACHINE;
D O I
10.1109/TCYB.2015.2467167
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Echo state network (ESN) is a new kind of recurrent neural network with a randomly generated reservoir structure and an adaptable linear readout layer. It has been widely employed in the field of time series prediction. However, when high-dimensional reservoirs are utilized to predict multivariate time series, there may be a collinearity problem. In this paper, to overcome the collinearity problem and obtain a sparse solution, we propose a new model-adaptive elastic ESN, in which adaptive elastic net algorithm is used to calculate the unknown weights. It combines the strengths of the quadratic regularization and the adaptively weighted lasso shrinkage. Hence, the proposed model can deal with the collinearity problem and enjoy the oracle property with an unbiased estimation. We exhibit the merits of our model on two benchmark multivariate chaotic datasets and two real-world applications. Experimental results substantiate the effectiveness and characteristics of the proposed model.
引用
收藏
页码:2173 / 2183
页数:11
相关论文
共 50 条
  • [1] Broad echo state network for multivariate time series prediction
    Yao, Xianshuang
    Wang, Zhanshan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2019, 356 (09): : 4888 - 4906
  • [2] Laplacian Echo State Network for Multivariate Time Series Prediction
    Han, Min
    Xu, Meiling
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2018, 29 (01) : 238 - 244
  • [3] Subspace Echo State Network for Multivariate Time Series Prediction
    Han, Min
    Xu, Meiling
    NEURAL INFORMATION PROCESSING, ICONIP 2012, PT V, 2012, 7667 : 681 - 688
  • [4] Adaptive Lasso Echo State Network for Time Series Prediction
    Zhao, Jing
    Wang, Lei
    Yang, Cuili
    2017 CHINESE AUTOMATION CONGRESS (CAC), 2017, : 5108 - 5111
  • [5] A novel echo state network for multivariate and nonlinear time series prediction
    Shen, Lihua
    Chen, Jihong
    Zeng, Zhigang
    Yang, Jianzhong
    Jin, Jian
    APPLIED SOFT COMPUTING, 2018, 62 : 524 - 535
  • [7] Hybrid Regularized Echo State Network for Multivariate Chaotic Time Series Prediction
    Xu, Meiling
    Han, Min
    Qiu, Tie
    Lin, Hongfei
    IEEE TRANSACTIONS ON CYBERNETICS, 2019, 49 (06) : 2305 - 2315
  • [8] Prediction of Multivariate Time Series with Sparse Gaussian Process Echo State Network
    Han, Min
    Ren, Weijie
    Xu, Meiling
    PROCEEDINGS OF THE 2013 FOURTH INTERNATIONAL CONFERENCE ON INTELLIGENT CONTROL AND INFORMATION PROCESSING (ICICIP), 2013, : 510 - 513
  • [9] Deep Echo State Network With Multiple Adaptive Reservoirs for Time Series Prediction
    Wang, Zhanshan
    Yao, Xianshuang
    Huang, Zhanjun
    Liu, Lei
    IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, 2021, 13 (03) : 693 - 704
  • [10] Multivariate Chaotic Time Series Prediction Using a Wavelet Diagonal Echo State Network
    Xu, Meiling
    Han, Min
    Wang, Jun
    2015 SECOND INTERNATIONAL CONFERENCE ON MATHEMATICS AND COMPUTERS IN SCIENCES AND IN INDUSTRY (MCSI), 2015, : 86 - 92