Desingularized meshless method for solving Laplace equation with over-specified boundary conditions using regularization techniques

被引:20
作者
Chen, K. H. [1 ]
Kao, J. H. [2 ]
Chen, J. T. [3 ]
Wu, K. L. [4 ]
机构
[1] Natl Ilan Univ, Dept Civil Engn, Ilan 26047, Taiwan
[2] Natl Cheng Kung Univ, Dept Hydraul & Ocean Engn, Tainan 70101, Taiwan
[3] Natl Taiwan Ocean Univ, Dept Harbor & River Engn, Chilung 20224, Taiwan
[4] Natl Taiwan Univ, Dept Civil Engn, Taipei 10617, Taiwan
关键词
Desingularized meshless method; Tikhonov method; Truncated singular value decomposition method; Inverse problem; Subtracting and adding-back technique; ILL-POSED PROBLEMS; FUNDAMENTAL-SOLUTIONS; L-CURVE; TIKHONOV REGULARIZATION; NUMERICAL-SOLUTION; CAUCHY-PROBLEM; DOMAIN;
D O I
10.1007/s00466-008-0348-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The desingularized meshless method (DMM) has been successfully used to solve boundary-value problems with specified boundary conditions (a direct problem) numerically. In this paper, the DMM is applied to deal with the problems with over-specified boundary conditions. The accompanied ill-posed problem in the inverse problem is remedied by using the Tikhonov regularization method and the truncated singular value decomposition method. The numerical evidences are given to verify the accuracy of the solutions after comparing with the results of analytical solutions through several numerical examples. The comparisons of results using Tikhonov method and truncated singular value decomposition method are also discussed in the examples.
引用
收藏
页码:827 / 837
页数:11
相关论文
共 27 条
[1]   Tikhonov regularization and the L-curve for large discrete ill-posed problems [J].
Calvetti, D ;
Morigi, S ;
Reichel, L ;
Sgallari, F .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2000, 123 (1-2) :423-446
[2]  
CHANG JR, 2001, J MAR SCI TECHNOL, V9, P113
[3]  
Chen CS, 1998, INT J NUMER METH ENG, V43, P1421, DOI 10.1002/(SICI)1097-0207(19981230)43:8<1421::AID-NME476>3.0.CO
[4]  
2-V
[5]   Analytical study and numerical experiments for Laplace equation with overspecified boundary conditions [J].
Chen, JT ;
Chen, KH .
APPLIED MATHEMATICAL MODELLING, 1998, 22 (09) :703-725
[6]   Regularized meshless method for multiply-connected-domain Laplace problems [J].
Chen, K. H. ;
Kao, J. H. ;
Chen, J. T. ;
Young, D. L. ;
Lu, M. C. .
ENGINEERING ANALYSIS WITH BOUNDARY ELEMENTS, 2006, 30 (10) :882-896
[7]   A meshless, integration-free, and boundary-only RBF technique [J].
Chen, W ;
Tanaka, M .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2002, 43 (3-5) :379-391
[8]   Direct solution of ill-posed boundary value problems by radial basis function collocation method [J].
Cheng, AHD ;
Cabral, JJSP .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2005, 64 (01) :45-64
[9]   The method of fundamental solutions for elliptic boundary value problems [J].
Fairweather, G ;
Karageorghis, A .
ADVANCES IN COMPUTATIONAL MATHEMATICS, 1998, 9 (1-2) :69-95
[10]  
FRANCK D, 2007, COMPUT MECH, DOI DOI 10.1007/S00466-007-0157-Y