Scalable synthesis of pyrrolic N-doped graphene by atmospheric pressure chemical vapor deposition and its terahertz response

被引:60
作者
Li, Jiayuan [1 ,2 ]
Ren, Zhaoyu [1 ,2 ]
Zhou, Yixuan [1 ,2 ]
Wu, Xiaojun
Xu, Xinlong [1 ,2 ,3 ,4 ]
Qi, Mei [1 ,2 ]
Li, Weilong [1 ,2 ]
Bai, Jintao [1 ,2 ]
Wang, Li [3 ,4 ]
机构
[1] NW Univ Xian, Nanobiophoton Ctr, State Key Lab Incubat Base Photoelect Technol & F, Xian 710069, Peoples R China
[2] NW Univ Xian, Inst Photon & Photontechnol, Xian 710069, Peoples R China
[3] Chinese Acad Sci, Beijing Natl Lab Condensed Matter Phys, Beijing 100190, Peoples R China
[4] Chinese Acad Sci, Inst Phys, Beijing 100190, Peoples R China
基金
中国国家自然科学基金;
关键词
CARBON NANOTUBES; NITROGEN-CONTENT; GROWTH; SPECTROSCOPY; TEMPERATURE; GRAPHITE;
D O I
10.1016/j.carbon.2013.05.070
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Atmospheric pressure chemical vapor deposition is employed to synthesize the N-doped graphene, which is mainly composed of pyrrolic type N bonding configuration with a controllable doping concentration from similar to 1.6% to similar to 6.4%. Transmission electron microscope, X-ray photoelectron spectroscopy, and Raman spectrometer are used for characterizing the pyrrolic N-doped graphene. X-ray photoelectron spectra confirm the dominant pyrrolic N bonding configuration, which is consistent with the Raman spectra compared with the pristine graphene. THz time-domain spectroscopy, four-probe DC electrical measurements, and visible spectroscopy are also utilized to analyze doping concentration qualitatively. The investigation suggests that THz wave is sensitive to the dopant concentration, which is relevant to the conductivity, while the visible light is insensitive to the dopant concentration. Our results further extend the synthesis method of N-doped graphene and the new type doped graphene might have potential applications in electrochemistry, electronics, photonics, and THz devices. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:330 / 336
页数:7
相关论文
共 42 条
[1]   Ultrahigh electron mobility in suspended graphene [J].
Bolotin, K. I. ;
Sikes, K. J. ;
Jiang, Z. ;
Klima, M. ;
Fudenberg, G. ;
Hone, J. ;
Kim, P. ;
Stormer, H. L. .
SOLID STATE COMMUNICATIONS, 2008, 146 (9-10) :351-355
[2]   General equation for the determination of the crystallite size La of nanographite by Raman spectroscopy [J].
Cançado, LG ;
Takai, K ;
Enoki, T ;
Endo, M ;
Kim, YA ;
Mizusaki, H ;
Jorio, A ;
Coelho, LN ;
Magalhaes-Paniago, R ;
Pimenta, MA .
APPLIED PHYSICS LETTERS, 2006, 88 (16)
[3]   Origin of the large N is binding energy in X-ray photoelectron spectra of calcined carbonaceous materials [J].
Casanovas, J ;
Ricart, JM ;
Rubio, J ;
Illas, F ;
JimenezMateos, JM .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1996, 118 (34) :8071-8076
[4]   Edge-functionalized and substitutionally doped graphene nanoribbons:: Electronic and spin properties [J].
Cervantes-Sodi, F. ;
Csanyi, G. ;
Piscanec, S. ;
Ferrari, A. C. .
PHYSICAL REVIEW B, 2008, 77 (16)
[5]   Broadband electromagnetic response and ultrafast dynamics of few-layer epitaxial graphene [J].
Choi, H. ;
Borondics, F. ;
Siegel, D. A. ;
Zhou, S. Y. ;
Martin, M. C. ;
Lanzara, A. ;
Kaindl, R. A. .
APPLIED PHYSICS LETTERS, 2009, 94 (17)
[6]   Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor [J].
Das, A. ;
Pisana, S. ;
Chakraborty, B. ;
Piscanec, S. ;
Saha, S. K. ;
Waghmare, U. V. ;
Novoselov, K. S. ;
Krishnamurthy, H. R. ;
Geim, A. K. ;
Ferrari, A. C. ;
Sood, A. K. .
NATURE NANOTECHNOLOGY, 2008, 3 (04) :210-215
[7]   Measurement of the optical absorption spectra of epitaxial graphene from terahertz to visible [J].
Dawlaty, Jahan M. ;
Shivaraman, Shriram ;
Strait, Jared ;
George, Paul ;
Chandrashekhar, Mvs ;
Rana, Farhan ;
Spencer, Michael G. ;
Veksler, Dmitry ;
Chen, Yunqing .
APPLIED PHYSICS LETTERS, 2008, 93 (13)
[8]   Electronic and structural properties of two-dimensional carbon nitride graphenes [J].
Deifallah, Malek ;
McMillan, Paul F. ;
Cora, Furio .
JOURNAL OF PHYSICAL CHEMISTRY C, 2008, 112 (14) :5447-5453
[9]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[10]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57