Research on exponential regularization approach for nonnegative Tucker3 decomposition

被引:2
作者
Wang, Haijun [1 ]
Xu, Feiyun [1 ]
Jia, Minping [1 ]
Hu, Jianzhong [1 ]
Huang, Peng [1 ]
机构
[1] Southeast Univ, Sch Mech Engn, Nanjing 211189, Jiangsu, Peoples R China
来源
OPTIK | 2013年 / 124卷 / 24期
基金
中国国家自然科学基金;
关键词
Tucker3; NTD; Exponential regularization; Updating algorithms; TENSOR FACTORIZATION; IMAGE;
D O I
10.1016/j.ijleo.2013.05.024
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Methods of nonnegative tensor factorization (NTF), such as NTF1, NTF2, etc., are extension of nonnegative matrix factorization (NMF) for multi-way data analysis. As an existing NTF method, nonnegative Tucker3 decomposition (NTD) is researched for three-way decomposition in this paper. Firstly, an approach utilizing matrix exponentials built on Tikhonov-type regularization to enforce sparseness is proposed to extract image features instead of exclusively using Tucker tensor decomposition. Meanwhile, updating algorithms, derived from updating rules of NMF, are allowed to efficiently implement updating of mode matrices and core tensors alternatively for accuracy. Then, experimental cases of alternating least squares (ALS) and conjugate nonnegative constraints, called nonnegative alternating least squares (NALS), are studied to remedy data overfitting in computing procedures. Lastly, the proposed method exhibits more advantageous results than other algorithms of Tucker3 for feature extraction, thanks to computer simulations performed in the context of data analysis. (C) 2013 Elsevier GmbH. All rights reserved.
引用
收藏
页码:6615 / 6621
页数:7
相关论文
共 21 条
  • [1] Unsupervised Multiway Data Analysis: A Literature Survey
    Acar, Evrim
    Yener, Buelent
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2009, 21 (01) : 6 - 20
  • [2] A scalable optimization approach for fitting canonical tensor decompositions
    Acar, Evrim
    Dunlavy, Daniel M.
    Kolda, Tamara G.
    [J]. JOURNAL OF CHEMOMETRICS, 2011, 25 (02) : 67 - 86
  • [3] Improving the speed of multi-way algorithms: Part I. Tucker3
    Andersson, CA
    Bro, R
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 1998, 42 (1-2) : 93 - 103
  • [4] Andrzej CAHP, 2009, NONNEGATIVE MATRIX T, V4, P203, DOI 10.1002/9780470747278.ch4
  • [5] Phan H, 2011, 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), P665, DOI 10.1109/SSP.2011.5967789
  • [6] [Anonymous], P SDM
  • [7] Algorithm 862: MATLAB tensor classes for fast algorithm prototyping
    Bader, Brett W.
    Kolda, Tamara G.
    [J]. ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2006, 32 (04): : 635 - 653
  • [8] Cichocki A., 2009, Nonnegative Matrix and Tensor Factorizations: Applications to Exploratory Multi-Way Data Analysis and Blind Source Separation, P131, DOI [10.1002/9780470747278.ch3, DOI 10.1002/9780470747278.CH3]
  • [9] Cichocki A, 2009, NONNEGATIVE MATRIX T, P337, DOI [10.1002/9780470747278.ch7, DOI 10.1002/9780470747278.CH7]
  • [10] A multiway approach to data integration in systems biology based on Tucker3 and N-PLS
    Conesa, Ana
    Prats-Montalban, Jose M.
    Tarazona, Sonia
    Jose Nueda, Ma
    Ferrer, Alberto
    [J]. CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2010, 104 (01) : 101 - 111