A systematic review of radiomics in osteosarcoma: utilizing radiomics quality score as a tool promoting clinical translation

被引:57
作者
Zhong, Jingyu [1 ]
Hu, Yangfan [2 ]
Si, Liping [1 ]
Jia, Geng [2 ]
Xing, Yue [2 ]
Zhang, Huan [3 ]
Yao, Weiwu [1 ]
机构
[1] Shanghai Jiao Tong Univ, Tongren Hosp, Dept Imaging, Sch Med, 1111 Xianxia Rd, Shanghai 200050, Peoples R China
[2] Shanghai Jiao Tong Univ Affiliated Peoples Hosp 6, Dept Radiol, 600 Yishan Rd, Shanghai 200233, Peoples R China
[3] Shanghai Jiao Tong Univ, Ruijin Hosp, Dept Radiol, Sch Med, 197 Ruijin 2nd Rd, Shanghai 200025, Peoples R China
基金
中国国家自然科学基金;
关键词
Osteosarcoma; Machine learning; Quality improvement; Neoadjuvant therapy; Systematic review; ADJUVANT CHEMOTHERAPY; IMAGES; TUMOR;
D O I
10.1007/s00330-020-07221-w
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Objectives To assess the methodological quality and risk of bias in radiomics studies investigating diagnosis, therapy response, and survival of patients with osteosarcoma. Methods In this systematic review, literatures on radiomics in osteosarcoma were included and assessed for methodological quality through the radiomics quality score (RQS). The risk of bias and concern of application was assessed using the Quality Assessment of Diagnostic Accuracy Studies tool. A meta-analysis of studies focusing on predicting osteosarcoma response to neoadjuvant chemotherapy was performed. Results Twelve radiomics studies exploring osteosarcoma were identified, and five were included in meta-analysis. The RQS reached an average of 20.4% (6.92 of 36) with good inter-rater agreement (ICC 0.95, 95% CI 0.85-0.99). Four studies validated results with an internal dataset, none of which used external dataset; one study was prospectively designed, and another one shared part of the dataset. The risk of bias and concern of application were mainly related to index test aspect. The meta-analysis showed a diagnostic odds ratio of 43.68 (95%CI 13.5-141.31) for predicting response to neoadjuvant chemotherapy with high heterogeneity and low methodological quality. Conclusions The overall scientific quality of included studies is insufficient; however, radiomics remains a promising technology for predicting treatment response, which might guide therapeutic decision-making and related to prognosis. Improvements in study design, validation, and open science needs to be made to demonstrate the generalizability of findings and to achieve clinical applications. Widespread application of RQS, pre-trained RQS scoring procedure, and modification of RQS in response to clinical needs are necessary.
引用
收藏
页码:1526 / 1535
页数:10
相关论文
共 53 条
[1]  
[Anonymous], 2017, HDB DTA REV
[2]   Prognostic value of FDG-PET indices for the assessment of histological response to neoadjuvant chemotherapy and outcome in pediatric patients with Ewing sarcoma and osteosarcoma [J].
Bailly, Clement ;
Leforestier, Rodolphe ;
Campion, Loic ;
Thebaud, Estelle ;
Moreau, Anne ;
Kraeber-Bodere, Francoise ;
Carlier, Thomas ;
Bodet-Milin, Caroline .
PLOS ONE, 2017, 12 (08)
[3]   Artificial intelligence in cancer imaging: Clinical challenges and applications [J].
Bi, Wenya Linda ;
Hosny, Ahmed ;
Schabath, Matthew B. ;
Giger, Maryellen L. ;
Birkbak, Nicolai J. ;
Mehrtash, Alireza ;
Allison, Tavis ;
Arnaout, Omar ;
Abbosh, Christopher ;
Dunn, Ian F. ;
Mak, Raymond H. ;
Tamimi, Rulla M. ;
Tempany, Clare M. ;
Swanton, Charles ;
Hoffmann, Udo ;
Schwartz, Lawrence H. ;
Gillies, Robert J. ;
Huang, Raymond Y. ;
Aerts, Hugo J. W. L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (02) :127-157
[4]   Bone sarcomas: ESMO-PaedCan-EURACAN Clinical Practice Guidelines for diagnosis, treatment and follow-up [J].
Casali, P. G. ;
Bielack, S. ;
Abecassis, N. ;
Aro, H. T. ;
Bauer, S. ;
Biagini, R. ;
Bonvalot, S. ;
Boukovinas, I. ;
Bovee, J. V. M. G. ;
Brennan, B. ;
Brodowicz, T. ;
Martin-Broto, J. ;
Brugieres, L. ;
Buonadonna, A. ;
De Alava, E. ;
Dei Tos, A. P. ;
Del Muro, X. G. ;
Dileo, P. ;
Dhooge, C. ;
Eriksson, M. ;
Fagioli, F. ;
Fedenko, A. ;
Ferraresi, V. ;
Ferrari, A. ;
Ferrari, S. ;
Frezza, A. M. ;
Gaspar, N. ;
Gasperoni, S. ;
Gelderblom, H. ;
Gil, T. ;
Grignani, G. ;
Gronchi, A. ;
Haas, R. L. ;
Hassan, B. ;
Hecker-Nolting, S. ;
Hohenberger, P. ;
Issels, R. ;
Joensuu, H. ;
Jones, R. L. ;
Judson, I. ;
Jutte, P. ;
Kaal, S. ;
Kager, L. ;
Kasper, B. ;
Kopeckova, K. ;
Krakorova, D. A. ;
Ladenstein, R. ;
Le Cesne, A. ;
Lugowska, I. ;
Merimsky, O. .
ANNALS OF ONCOLOGY, 2018, 29 :79-95
[5]   Texture analysis of medical images [J].
Castellano, G ;
Bonilha, L ;
Li, LM ;
Cendes, F .
CLINICAL RADIOLOGY, 2004, 59 (12) :1061-1069
[6]   Automated Classification of Significant Prostate Cancer on MRI: A Systematic Review on the Performance of Machine Learning Applications [J].
Castillo T., Jose M. ;
Arif, Muhammad ;
Niessen, Wiro J. ;
Schoots, Ivo G. ;
Veenland, Jifke F. .
CANCERS, 2020, 12 (06) :1-13
[7]   Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives [J].
Chetan, Madhurima R. ;
Gleeson, Fergus V. .
EUROPEAN RADIOLOGY, 2021, 31 (02) :1049-1058
[8]   Computerized texture analysis of pulmonary nodules in pediatric patients with osteosarcoma: Differentiation of pulmonary metastases from non-metastatic nodules [J].
Cho, Yeon Jin ;
Kim, Woo Sun ;
Choi, Young Hun ;
Ha, Ji Young ;
Lee, SeungHyun ;
Park, Sang Joon ;
Cheon, Jung-Eun ;
Kang, Hyoung Jin ;
Shin, Hee Young ;
Kim, In-One .
PLOS ONE, 2019, 14 (02)
[9]  
Coffin CM, 2005, AM J CLIN PATHOL, V123, P75, DOI 10.1309/H0D4VD760NH6N1R6
[10]  
Collins GS, 2015, ANN INTERN MED, V162, P55, DOI [10.1186/s12916-014-0241-z, 10.7326/M14-0698, 10.1016/j.jclinepi.2014.11.010, 10.7326/M14-0697, 10.1016/j.eururo.2014.11.025, 10.1002/bjs.9736, 10.1038/bjc.2014.639, 10.1136/bmj.g7594, 10.1111/eci.12376]