Heteroclinic chaotic behavior driven by a Brownian motion

被引:44
作者
Shen, Jun [1 ]
Lu, Kening [1 ,2 ]
Zhang, Weinian [1 ]
机构
[1] Sichuan Univ, Sch Math, Chengdu 610064, Sichuan, Peoples R China
[2] Brigham Young Univ, Dept Math, Provo, UT 84602 USA
基金
美国国家科学基金会;
关键词
Heteroclinic loops; Brownian motion; Unbounded stochastic forcing; Topological horseshoe; Random Melnikov function; DIFFERENTIAL-EQUATIONS DRIVEN; EXPONENTIAL DICHOTOMIES; PERIODIC PERTURBATIONS; DYNAMICAL-SYSTEMS; TANGLES;
D O I
10.1016/j.jde.2013.08.003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we study the chaotic behavior of a planar ordinary differential system with a heteroclinic loop driven by a Brownian motion, an unbounded random forcing. Unlike the case of homoclinic loops, two random Melnikov functions are needed in order to investigate the intersection of stable segments of one saddle and unstable segments of the other saddle. We prove that for almost all paths of the Brownian motion the forced system admits a topological horseshoe of infinitely many branches. We apply this result to the Josephson junction and the soft spring Duffing oscillator. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:4185 / 4225
页数:41
相关论文
共 38 条
[1]  
ALEKSEEV V.M., 1968, MAT USSR SBORNIK, V5, P73
[2]  
[Anonymous], 1965, Sov. Math. Doklady
[3]  
[Anonymous], 1977, PRIKL MAT MEKH, DOI DOI 10.1016/0021-8928(77)90112-5
[4]  
[Anonymous], MATH USSR SB
[5]  
[Anonymous], 1968, Math. USSRSbornik, DOI 10.1070/SM1968v006n03ABEH001069
[6]  
[Anonymous], 1899, Les Methods Nouvells de la Mecanique Leleste
[7]  
[Anonymous], MATH USSR SB
[8]   CHAOS IN THE DUFFING EQUATION [J].
BATTELLI, F ;
PALMER, KJ .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1993, 101 (02) :276-301
[9]  
Birkhoff GD., 1935, MEM PONT ACAD SCI NO, V53, P85
[10]   Heteroclinic tangles in time-periodic equations [J].
Chen, Fengjuan ;
Oksasoglu, Ali ;
Wang, Qiudong .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2013, 254 (03) :1137-1171