Inhibition of O-GlcNAc transferase activates tumor-suppressor gene expression in tamoxifen-resistant breast cancer cells

被引:31
作者
Barkovskaya, Anna [1 ,2 ,9 ]
Seip, Kotryna [2 ]
Prasmickaite, Lina [2 ]
Mills, Ian G. [3 ,4 ,5 ]
Moestue, Siver A. [6 ,7 ]
Itkonen, Harri M. [3 ,8 ]
机构
[1] NTNU, Dept Circulat & Med Imaging, Trondheim, Norway
[2] Oslo Univ Hosp, Radiumhosp, Dept Tumor Biol, Inst Canc Res, Oslo, Norway
[3] Univ Oslo, Nord European Mol Biol Lab Partnership, Ctr Mol Med Norway, Forskningspk, N-0349 Oslo, Norway
[4] Univ Oxford, Nuffield Dept Surg Sci, Oxford, England
[5] Queens Univ Belfast, Patrick G Johnston Ctr Canc Res, Belfast, Antrim, North Ireland
[6] NTNU, Dept Clin & Mol Med, Trondheim, Norway
[7] Nord Univ, Dept Hlth Sci, Bodo, Norway
[8] Univ Helsinki, Dept Biochem & Dev Biol, Fac Med, Helsinki 00014, Finland
[9] Univ Calif San Francisco, Dept Surg, San Francisco, CA 94143 USA
基金
芬兰科学院;
关键词
N-ACETYLGLUCOSAMINE; OGT ACTIVITY; GLCNACYLATION; MECHANISMS; METABOLISM; DATABASE; PATHWAY; DRIVEN; MYC;
D O I
10.1038/s41598-020-74083-z
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study, we probed the importance of O-GlcNAc transferase (OGT) activity for the survival of tamoxifen-sensitive (TamS) and tamoxifen-resistant (TamR) breast cancer cells. Tamoxifen is an antagonist of estrogen receptor (ERa), a transcription factor expressed in over 50% of breast cancers. ERa-positive breast cancers are successfully treated with tamoxifen; however, a significant number of patients develop tamoxifen-resistant disease. We show that in vitro development of tamoxifenresistance is associated with increased sensitivity to the OGT small molecule inhibitor OSMI-1. Global transcriptome profiling revealed that TamS cells adapt to OSMI-1 treatment by increasing the expression of histone genes. This is known to mediate chromatin compaction. In contrast, TamR cells respond to OGT inhibition by activating the unfolded protein response and by significantly increasing ERRFI1 expression. ERRFI1 is an endogenous inhibitor of ERBB-signaling, which is a known driver of tamoxifen-resistance. We show that ERRFI1 is selectively downregulated in ERa-positive breast cancers and breast cancers driven by ERBB2. This likely occurs via promoter methylation. Finally, we show that increased ERRFI1 expression is associated with extended survival in patients with ERa-positive tumors (p = 9.2e-8). In summary, we show that tamoxifen-resistance is associated with sensitivity to OSMI-1, and propose that this is explained in part through an epigenetic activation of the tumor-suppressor ERRFI1 in response to OSMI-1 treatment.
引用
收藏
页数:10
相关论文
共 59 条
[1]   O-GlcNAc Transferase Regulates Cancer Stem-like Potential of Breast Cancer Cells [J].
Akella, Neha M. ;
Le Minh, Giang ;
Ciraku, Lorela ;
Mukherjee, Ayonika ;
Bacigalupa, Zachary A. ;
Mukhopadhyay, Dimpi ;
Sodi, Valerie L. ;
Reginato, Mauricio J. .
MOLECULAR CANCER RESEARCH, 2020, 18 (04) :585-598
[2]   Feedback inhibition by RALT controls signal output by the ErbB network [J].
Anastasi, S ;
Fiorentino, L ;
Fiorini, M ;
Fraioli, R ;
Sala, G ;
Castellani, L ;
Alemà, S ;
Alimandi, M ;
Segatto, O .
ONCOGENE, 2003, 22 (27) :4221-4234
[3]   Roles of O-GlcNAc in chronic diseases of aging [J].
Banerjee, Partha S. ;
Lagerloef, Olof ;
Hart, Gerald W. .
MOLECULAR ASPECTS OF MEDICINE, 2016, 51 :1-15
[4]   O-GlcNAc Transferase Inhibition Differentially Affects Breast Cancer Subtypes [J].
Barkovskaya, Anna ;
Seip, Kotryna ;
Hilmarsdottir, Bylgja ;
Maelandsmo, Gunhild M. ;
Moestue, Siver A. ;
Itkonen, Harri M. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[5]   Differential roles of ERRFI1 in EGFR and AKT pathway regulation affect cancer proliferation [J].
Cairns, Junmei ;
Fridley, Brooke L. ;
Jenkins, Gregory D. ;
Zhuang, Yongxian ;
Yu, Jia ;
Wang, Liewei .
EMBO REPORTS, 2018, 19 (03)
[6]   Nutrient sensor O-GlcNAc transferase regulates breast cancer tumorigenesis through targeting of the oncogenic transcription factor FoxM1 [J].
Caldwell, S. A. ;
Jackson, S. R. ;
Shahriari, K. S. ;
Lynch, T. P. ;
Sethi, G. ;
Walker, S. ;
Vosseller, K. ;
Reginato, M. J. .
ONCOGENE, 2010, 29 (19) :2831-2842
[7]   O-GlcNAc Transferase Catalyzes Site-Specific Proteolysis of HCF-1 [J].
Capotosti, Francesca ;
Guernier, Sophie ;
Lammers, Fabienne ;
Waridel, Patrice ;
Cai, Yong ;
Jin, Jingji ;
Conaway, Joan W. ;
Conaway, Ronald C. ;
Herr, Winship .
CELL, 2011, 144 (03) :376-388
[8]   Proteomic analysis and abrogated expression of O-GlcNAcylated proteins associated with primary breast cancer [J].
Champattanachai, Voraratt ;
Netsirisawan, Pukkavadee ;
Chaiyawat, Parunya ;
Phueaouan, Thanong ;
Charoenwattanasatien, Ratana ;
Chokchaichamnankit, Daranee ;
Punyarit, Phaibul ;
Srisomsap, Chantragan ;
Svasti, Jisnuson .
PROTEOMICS, 2013, 13 (14) :2088-2099
[9]   UALCAN: A Portal for Facilitating Tumor Subgroup Gene Expression and Survival Analyses [J].
Chandrashekar, Darshan S. ;
Bashel, Bhuwan ;
Balasubramanya, Sai Akshaya Hodigere ;
Creighton, Chad J. ;
Ponce-Rodriguez, Israel ;
Chakravarthi, Balabhadrapatruni V. S. K. ;
Varambally, Sooryanarayana .
NEOPLASIA, 2017, 19 (08) :649-658
[10]   Glycosylation of KEAP1 links nutrient sensing to redox stress signaling [J].
Chen, Po-Han ;
Smith, Timothy J. ;
Wu, Jianli ;
Siesser, Priscila F. ;
Bisnett, Brittany J. ;
Khan, Farhan ;
Hogue, Maxwell ;
Soderblom, Erik ;
Tang, Flora ;
Marks, Jeffrey R. ;
Major, Michael B. ;
Swarts, Benjamin M. ;
Boyce, Michael ;
Chi, Jen-Tsan .
EMBO JOURNAL, 2017, 36 (15) :2233-2250