Large-time behaviour of the higher-dimensional logarithmic diffusion equation

被引:7
作者
Hui, Kin Ming [1 ]
Kim, Sunghoon [2 ,3 ]
机构
[1] Acad Sinica, Inst Math, Taipei 10617, Taiwan
[2] Pohang Univ Sci & Technol, Dept Math, Pohang 790784, Gyungbuk, South Korea
[3] Pohang Univ Sci & Technol, Pohang Math Inst, Pohang 790784, Gyungbuk, South Korea
基金
新加坡国家研究基金会;
关键词
PROFILE; LIMIT; U(T);
D O I
10.1017/S0308210512000467
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let n >= 3 and let psi lambda(0) be the radially symmetric solution of Delta log psi + 2 beta psi + beta x . del psi = 0 in R-n, psi(0) = lambda(0), for some constants lambda(0) > 0, beta > 0. Suppose u(0) >= 0 satisfies u(0) - psi lambda(0) is an element of L-1(R-n) and u(0)(x) approximate to (2(n - 2)/beta)(log vertical bar x vertical bar/vertical bar x vertical bar(2)) as vertical bar x vertical bar -> infinity. We prove that the rescaled solution (u) over tilde (x, t) = e(2 beta t)u(e(beta t)x, t) of the maximal global solution u of the equation u(t) =Delta log u in R-n x (0, infinity), u(x, 0) = u(0)(x) in R-n, converges uniformly on every compact subset of R-n and in L-1(R-n) to psi lambda(0) as t -> infinity. Moreover, parallel to(u) over tilde(. , t) - psi lambda(0)parallel to(L1(Rn)) <= e(-(n-2)beta t)parallel to u(0) - psi lambda(0)parallel to(L1(Rn)) for all t >= 0.
引用
收藏
页码:817 / 830
页数:14
相关论文
共 24 条
[1]  
[Anonymous], 1995, Comm. in Analysis and Geometry
[2]  
ARONSON DG, 1986, LECT NOTES MATH, V1224, P1
[3]  
Daskalopoulos P, 1999, MATH ANN, V313, P189, DOI 10.1007/s002080050257
[4]   Type II collapsing of maximal solutions to the Ricci flow in R2 [J].
Daskalopoulos, P. ;
del Pino, Manuel .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2007, 24 (06) :851-874
[5]  
DASKALOPOULOS P, 2007, TRACTS MATH, V1, P1
[6]   On the extinction profile of solutions to fast diffusion [J].
Daskalopoulos, Panagiota ;
Sesum, Natasa .
JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2008, 622 :95-119
[7]   Type II Extinction Profile of Maximal Solutions to the Ricci Flow in R2 [J].
Daskalopoulos, Panagiota ;
Sesum, Natasa .
JOURNAL OF GEOMETRIC ANALYSIS, 2010, 20 (03) :565-591
[8]  
Hsu S. Y., 2001, DIFFERENTIAL INTEGRA, V14, P305
[9]  
Hsu SY, 2005, DIFFER INTEGRAL EQU, V18, P1175
[10]   Asymptotic profile of solutions of a singular diffusion equation as t → ∞ [J].
Hsu, SY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2002, 48 (06) :781-790