Quasi-complete intersections of monomial curves in projective three-space

被引:0
作者
Bresinsky, H
Stückrad, J
机构
[1] Univ Maine, Dept Math & Stat, Orono, ME 04469 USA
[2] Univ Leipzig, Fak Math & Informat, Math Inst, D-04109 Leipzig, Germany
关键词
D O I
10.1080/00927879908826769
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We classify completely all quasi-complete intersections of monomial curves in IPK3, K an infinite field, see Theorem 4.1 and Theorem 4.2. This completes the investigations started in [4].
引用
收藏
页码:5487 / 5506
页数:20
相关论文
共 8 条
[1]   ON THE STRUCTURE OF LOCAL COHOMOLOGY MODULES FOR MONONOMIAL CURVES IN P-K(3) [J].
BRESINSKY, H ;
CURTIS, F ;
FIORENTINI, M ;
HOA, LT .
NAGOYA MATHEMATICAL JOURNAL, 1994, 136 :81-114
[2]   Quasi-complete intersection ideals of height 2 [J].
Bresinsky, H ;
Schenzel, P ;
Stuckrad, J .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1998, 127 (02) :137-145
[3]   CALCULATION OF GENERATING SETS OF PROJECTED VERONESEAN IDEALS WITH GENERAL ZERO (T0M,T0M-RT1R,T0M-ST1S,T1M) [J].
BRESINSKY, H ;
RENSCHUCH, B .
MATHEMATISCHE NACHRICHTEN, 1980, 96 :257-269
[4]   ON GENERATING SETS AND GROBNER BASES FOR POLYNOMIAL IDEALS [J].
BRESINSKY, H ;
CURTIS, F .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (08) :2271-2287
[5]   GENERATORS AND RELATIONS OF ABELIAN SEMIGROUPS AND SEMIGROUP RINGS [J].
HERZOG, J .
MANUSCRIPTA MATHEMATICA, 1970, 3 (02) :175-&
[6]   ON THE EQUATIONS WHICH ARE NEEDED TO DEFINE A CLOSED SUBSCHEME OF THE PROJECTIVE-SPACE [J].
PORTELLI, D ;
SPANGHER, W .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1995, 98 (01) :83-93
[7]   ON QUASI-COMPLETE INTERSECTIONS [J].
STUCKRAD, J .
ARCHIV DER MATHEMATIK, 1992, 58 (06) :529-538
[8]  
Zariski O., 1960, Commutative Algebra, VII