Enhanced Performance of Fabry-Perot Tunable Filter by Groove Geometry Design of Double Folded Cantilever

被引:2
作者
Ding, Yifan [1 ]
Hou, Haigang [1 ]
Huang, Qingwei [2 ]
Liu, Junlin [1 ]
Hussain, Shahid [1 ]
Qiao, Guanjun [1 ]
机构
[1] Jiangsu Univ, Sch Mat Sci & Engn, Zhenjiang 212013, Jiangsu, Peoples R China
[2] Shanghai Gefeite Sensor Co Ltd, Shanghai 201800, Peoples R China
基金
中国国家自然科学基金;
关键词
Optical Sensor; Fabry-Perot; Resonator; Tunable Filter; Cantilever Design; Finite Element Simulation;
D O I
10.1166/jno.2020.2830
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Different grooves (v-shaped groove, trapezoidal groove and rectangular, groove) are introduced into the traditional double-folded cantilever of Fabry-Perot Tunable Filter (FPTF) for the optical sensor. Using finite element simulation, the influence of groove geometry on the voltage-displacement relationship, stress distribution and reflector flatness of the FPTF are studied. The results show that the reflector supported by double folded cantilever with rectangular groove has a maximal displacement of 0.88 mu m under 8 V driving voltage, which is 95% higher than double folded cantilever without groove. At 0.5 mu m, the best flatness (warping angle of reflector) is only 0.0032 degrees for reflector supported by double folded cantilever with rectangular groove, where the generated maximal stress in the double folded cantilever is 8.49 MPa. Compared with other double folded cantilevers with v-shaped groove, trapezoidal groove and without groove, the unique properties of double folded cantilever with rectangular groove are attributed to lower elastic modulus. The double folded cantilever with rectangular groove enlarges displacement results in wide range of bandpass wavelength of FPTF, and a best flatness to enhance the monochrome of bandpass wavelength.
引用
收藏
页码:687 / 692
页数:6
相关论文
共 11 条
[1]  
Bao M., 2005, Analysis and Design Principles of MEMS Devices, P175, DOI [DOI 10.1016/B978044451616-9/50005-9, 10.1016/B978-044451616-9/50005-9, DOI 10.1016/B978-044451616-9/50005-9]
[2]   A review of visible-range Fabry-Perot microspectrometers in silicon for the industry [J].
Carmo, Joao Paulo ;
Rocha, Rui Pedro ;
Bartek, Marian ;
de Graaf, Ger ;
Wolffenbuttel, Reinoud F. ;
Correia, Jose Higino .
OPTICS AND LASER TECHNOLOGY, 2012, 44 (07) :2312-2320
[3]   Tunable MEMS Fabry-Perot filters for infrared microspectrometers: A review [J].
Ebermann, Martin ;
Neumann, Norbert ;
Hiller, Karla ;
Seifert, Mario ;
Meinig, Marco ;
Kurth, Steffen .
MOEMS AND MINIATURIZED SYSTEMS XV, 2016, 9760
[4]   Application of a tunable Fabry-Perot filtometer to mid-infrared gas sensing [J].
Gasser, Christoph ;
Genner, Andreas ;
Moser, Harald ;
Ofner, Johannes ;
Lendl, Bernhard .
SENSORS AND ACTUATORS B-CHEMICAL, 2017, 242 :9-14
[5]  
Gunning W.J., 2005, P SPIE, V5783.
[6]   Chronology of Fabry-Perot Interferometer Fiber-Optic Sensors and Their Applications: A Review [J].
Islam, Md Rajibul ;
Ali, Muhammad Mahmood ;
Lai, Man-Hong ;
Lim, Kok-Sing ;
Ahmad, Harith .
SENSORS, 2014, 14 (04) :7451-7488
[7]   Design and Characterization of Fabry-Perot MEMS-Based Short-Wave Infrared Microspectrometers [J].
Keating, A. J. ;
Antoszewski, J. ;
Silva, K. K. M. B. D. ;
Winchester, K. J. ;
Nguyen, T. ;
Dell, J. M. ;
Musca, C. A. ;
Faraone, L. ;
Mitra, P. ;
Beck, J. D. ;
Skokan, M. R. ;
Robinson, J. E. .
JOURNAL OF ELECTRONIC MATERIALS, 2008, 37 (12) :1811-1820
[8]   Widely Tunable MEMS-Based Fabry-Perot Filter [J].
Milne, Jason S. ;
Dell, John M. ;
Keating, Adrian J. ;
Faraone, Lorenzo .
JOURNAL OF MICROELECTROMECHANICAL SYSTEMS, 2009, 18 (04) :905-913
[9]  
Neumann N., 2008, J MICROLITHOGRAPH MI, V7, P9
[10]   Design of fiber Bragg grating-based Fabry-Perot sensor for simultaneous measurement of humidity and temperature [J].
Yulianti, Ian ;
Supa'at, Abu Sahmah M. ;
Idrus, Sevia M. ;
Anwar, M. Ridwanto S. .
OPTIK, 2013, 124 (19) :3919-3923