Efficient Route for the Production of Isoprene via Decarboxylation of Bioderived Mevalonolactone

被引:15
作者
Heracleous, Eleni [1 ,3 ]
Pachatouridou, Eleni [1 ]
Louie, Lin [2 ]
Dugar, Deepak [2 ]
Lappas, Angelos A. [1 ]
机构
[1] Ctr Res & Technol Hellas CERTH, Chem Proc & Energy Resources Inst CPERI, Thessaloniki 57001, Greece
[2] Visolis BV, NL-6167 RD Geleen, Netherlands
[3] Int Hellen Univ, Sch Sci & Technol, Thermi 57001, Greece
来源
ACS CATALYSIS | 2020年 / 10卷 / 16期
基金
欧盟地平线“2020”;
关键词
mevalonolactone; isoprene; ring opening; decarboxylation; aluminosilicates; GAMMA-VALEROLACTONE; BIOMASS; ACID; SITES;
D O I
10.1021/acscatal.0c01438
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Isoprene production from biomass via solely biochemical processes is inherently limited by the low yields of the biological pathways. In this work, we demonstrate that isoprene can be efficiently produced via a hybrid bio/thermochemical process, combining the efficient fermentation of cellulosic sugars to mevalonolactone (MVL) with the acid-catalyzed MVL decarboxylation to isoprene. We report herein the thermochemical conversion of MVL to isoprene over inexpensive amorphous SiO2/Al2O3. A detailed investigation into the reaction conditions and the Si/AI ratio shows that isoprene formation is maximized over high-SiO2-content samples at mild temperatures (225-250 degrees C) that prevent its secondary oligomerization to alkylated aromatics and cyclic olefins. The highest isoprene yield is attained over SiO2/Al2O3 with 90 wt % SiO2 at 250 degrees C and 1.4 h(-1), corresponding to similar to 60% of the theoretical maximum. Acidity-performance correlations reveal the key role of Bronsted acidity in the reaction.
引用
收藏
页码:9649 / 9661
页数:13
相关论文
共 35 条
  • [1] Renewable Isoprene by Sequential Hydrogenation of Itaconic Acid and Dehydra-Decyclization of 3-Methyl-Tetrahydrofuran
    Abdelrahman, Omar A.
    Park, Dae Sung
    Vinter, Katherine P.
    Spanjers, Charles S.
    Ren, Limin
    Cho, Hong Je
    Zhang, Kechun
    Fan, Wei
    Tsapatsis, Michael
    Dauenhauer, Paul J.
    [J]. ACS CATALYSIS, 2017, 7 (02): : 1428 - 1431
  • [2] Catalytic conversion of biomass to biofuels
    Alonso, David Martin
    Bond, Jesse Q.
    Dumesic, James A.
    [J]. GREEN CHEMISTRY, 2010, 12 (09) : 1493 - 1513
  • [3] Biddy M. J., 2016, TP510065509 NREL, P50
  • [4] Microkinetic analysis of ring opening and decarboxylation of γ-valerolactone over silica alumina
    Bond, Jesse Q.
    Jungong, Christian S.
    Chatzidimitriou, Anargyros
    [J]. JOURNAL OF CATALYSIS, 2016, 344 : 640 - 656
  • [5] Interconversion between γ-valerolactone and pentenoic acid combined with decarboxylation to form butene over silica/alumina
    Bond, Jesse Q.
    Wang, Dong
    Alonso, David Martin
    Dumesic, James A.
    [J]. JOURNAL OF CATALYSIS, 2011, 281 (02) : 290 - 299
  • [6] γ-Valerolactone Ring-Opening and Decarboxylation over SiO2/Al2O3 in the Presence of Water
    Bond, Jesse Q.
    Alonso, David Martin
    West, Ryan M.
    Dumesic, James A.
    [J]. LANGMUIR, 2010, 26 (21) : 16291 - 16298
  • [7] Integrated Catalytic Conversion of γ-Valerolactone to Liquid Alkenes for Transportation Fuels
    Bond, Jesse Q.
    Alonso, David Martin
    Wang, Dong
    West, Ryan M.
    Dumesic, James A.
    [J]. SCIENCE, 2010, 327 (5969) : 1110 - 1114
  • [8] Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energy's "Top 10" revisited
    Bozell, Joseph J.
    Petersen, Gene R.
    [J]. GREEN CHEMISTRY, 2010, 12 (04) : 539 - 554
  • [9] Shale Gas Revolution: An Opportunity for the Production of Biobased Chemicals?
    Bruijnincx, Pieter C. A.
    Weckhuysen, Bert M.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (46) : 11980 - 11987
  • [10] Liquid-phase catalytic processing of biomass-derived oxygenated hydrocarbons to fuels and chemicals
    Chheda, Juben N.
    Huber, George W.
    Dumesic, James A.
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2007, 46 (38) : 7164 - 7183