Legendre spectral projection methods for linear second kind Volterra integral equations with weakly singular kernels

被引:2
作者
Chakraborty, Samiran [1 ]
Kant, Kapil [2 ]
Nelakanti, Gnaneshwar [1 ]
机构
[1] Indian Inst Technol Kharagpur, Dept Math, Kharagpur 721302, W Bengal, India
[2] Indian Inst Technol Kanpur, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
来源
INTERNATIONAL JOURNAL OF NONLINEAR ANALYSIS AND APPLICATIONS | 2022年 / 13卷 / 02期
关键词
Volterra integral equations; Galerkin method; Multi-Galerkin method; Weakly singular kernels; Legendre polynomials; NUMERICAL-SOLUTION; COLLOCATION METHOD; SUPERCONVERGENCE;
D O I
10.22075/ijnaa.2020.20716.2195
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, Galerkin and iterated Galerkin methods are applied to approximate the linear second kind Volterra integral equations with weakly singular algebraic kernels using Legendre polynomial basis functions. We discuss the convergence results in both L-2 and infinity norms in two cases: when the exact solution is sufficiently smooth and non-smooth. We also apply Legendre multi-Galerkin and iterated Legendre multi-Galerkin methods and derive the superconvergence rates. Numerical results are given to verify the theoretical results.
引用
收藏
页码:1377 / 1397
页数:21
相关论文
共 32 条
[1]  
Ahues M., 2001, SPECTRAL COMPUTATION
[2]  
[Anonymous], 1997, The Numerical Solution of Integral Equations of the Second Kind
[3]   A meshless local Galerkin method for solving Volterra integral equations deduced from nonlinear fractional differential equations using the moving least squares technique [J].
Assari, Pouria ;
Dehghan, Mehdi .
APPLIED NUMERICAL MATHEMATICS, 2019, 143 :276-299
[4]   A numerical scheme for solving a class of logarithmic integral equations arisen from two-dimensional Helmholtz equations using local thin plate splines [J].
Assari, Pouria ;
Asadi-Mehregan, Fatemeh ;
Cuomo, Salvatore .
APPLIED MATHEMATICS AND COMPUTATION, 2019, 356 :157-172
[7]   A meshless discrete Galerkin (MDG) method for the numerical solution of integral equations with logarithmic kernels [J].
Assari, Pouria ;
Adibi, Hojatollah ;
Dehghan, Mehdi .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2014, 267 :160-181
[9]  
BRUNNER H, 1985, MATH COMPUT, V45, P417, DOI 10.1090/S0025-5718-1985-0804933-3
[10]  
Brunner H., 2004, COLLOCATION METHODS