Simple vector fields with complex behavior

被引:20
作者
Aguiar, MAD
Castro, SBSD
Labouriau, IS
机构
[1] Univ Porto, Ctr Matemat, P-4169007 Oporto, Portugal
[2] Univ Porto, Fac Econ, P-4200464 Oporto, Portugal
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2006年 / 16卷 / 02期
关键词
vector fields; complex behavior; heteroclinic networks;
D O I
10.1142/S021812740601485X
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We construct examples of vector fields on a three-sphere, amenable to analytic proof of properties that guarantee the existence of complex behavior. The examples are restrictions of symmetric polynomial vector fields in R 4 and possess heteroclinic networks producing switching and nearby suspended horseshoes. The heteroclinic networks in our examples axe persistent under symmetry preserving perturbations. We prove that some of the connections in the networks are the transverse intersection of invariant manifolds. The remaining connections are symmetry-induced. The networks lie in an invariant three-sphere and may involve connections exclusively between equilibria or between equilibria and periodic trajectories. The same construction technique may be applied to obtain other examples with similar features.
引用
收藏
页码:369 / 381
页数:13
相关论文
共 13 条
[1]   Dynamics near a heteroclinic network [J].
Aguiar, MAD ;
Castro, SBSD ;
Labouriau, IS .
NONLINEARITY, 2005, 18 (01) :391-414
[2]  
AGUIAR MAD, 2003, THESIS DEP MATEMATIC, P30101
[3]   HETEROCLINIC ORBITS AND CHAOTIC DYNAMICS IN PLANAR FLUID-FLOWS [J].
BERTOZZI, AL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1988, 19 (06) :1271-1294
[4]   The reduction of equivariant dynamics to the orbit space for compact group actions [J].
Chossat, P .
ACTA APPLICANDAE MATHEMATICAE, 2002, 70 (1-3) :71-94
[5]  
FIELD MJ, 1996, PITMAN RES NOTES MAT, V356, P30101
[6]   STRUCTURALLY STABLE HETEROCLINIC CYCLES [J].
GUCKENHEIMER, J ;
HOLMES, P .
MATHEMATICAL PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1988, 103 :189-192
[7]  
GUCKENHEIMER J, 1997, DSTOOL DYNAMICAL SYS, P30101
[8]  
GUCKENHEIMER J, 1983, APPL MATH SCI, V42, P30101
[9]   ASYMPTOTIC STABILITY OF HETEROCLINIC CYCLES IN SYSTEMS WITH SYMMETRY [J].
KRUPA, M ;
MELBOURNE, I .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 1995, 15 :121-147
[10]   BIFURCATIONS OF RELATIVE EQUILIBRIA [J].
KRUPA, M .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1990, 21 (06) :1453-1486