Existence of risk-sensitive optimal stationary policies for controlled Markov processes

被引:35
作者
Hernández-Hernández, D [1 ]
Marcus, SI
机构
[1] Univ Maryland, Syst Res Inst, College Pk, MD 20742 USA
[2] Univ Maryland, Dept Elect Engn, College Pk, MD 20742 USA
关键词
risk-sensitive stochastic control; dynamic games; Isaacs equation; optimal stationary policies;
D O I
10.1007/s002459900126
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we are concerned with the existence of optimal stationary policies for infinite-horizon risk-sensitive Markov control processes with denumerable state space, unbounded cost function, and long-run average cost. Introducing a discounted cost dynamic game, we prove that its value function satisfies an Isaacs equation, and its relationship with the risk-sensitive control problem is studied. Using the vanishing discount approach, we prove that the risk-sensitive dynamic programming inequality holds, and derive an optimal stationary policy.
引用
收藏
页码:273 / 285
页数:13
相关论文
共 20 条
[1]   DISCRETE-TIME CONTROLLED MARKOV-PROCESSES WITH AVERAGE COST CRITERION - A SURVEY [J].
ARAPOSTATHIS, A ;
BORKAR, VS ;
FERNANDEZGAUCHERAND, E ;
GHOSH, MK ;
MARCUS, SI .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (02) :282-344
[2]  
Baras JS., 1997, J MATH SYSTEMS ESTIM, V7, P371
[3]   ON MINIMUM COST PER UNIT TIME CONTROL OF MARKOV-CHAINS [J].
BORKAR, VS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1984, 22 (06) :965-978
[4]   COMPARING RECENT ASSUMPTIONS FOR THE EXISTENCE OF AVERAGE OPTIMAL STATIONARY POLICIES [J].
CAVAZOSCADENA, R ;
SENNOTT, LI .
OPERATIONS RESEARCH LETTERS, 1992, 11 (01) :33-37
[5]  
CAVAZOSCADENA R, 1989, KYBERNETIKA, V25, P145
[6]  
Deuschel J. D., 1989, LARGE DEVIATIONS
[7]  
Dupuis P., 1997, WEAK CONVERGENCE APP
[8]  
FERNANDEZGAUCHERAND E, 1994, IEEE DECIS CONTR P, P1657, DOI 10.1109/CDC.1994.411203
[9]   RISK-SENSITIVE CONTROL ON AN INFINITE TIME HORIZON [J].
FLEMING, WH ;
MCENEANEY, WM .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1995, 33 (06) :1881-1915
[10]  
FLEMING WH, 1992, LECT NOTES CONTR INF, V184, P185