On the performance of de novo pathway enrichment

被引:35
作者
Batra, Richa [1 ,2 ,3 ]
Alcaraz, Nicolas [1 ,4 ]
Gitzhofer, Kevin [5 ]
Pauling, Josch [6 ]
Ditzel, Henrik J. [4 ,7 ]
Hellmuth, Marc [5 ,8 ]
Baumbach, Jan [1 ,9 ]
List, Markus [10 ]
机构
[1] Univ Southern Denmark, Dept Math & Comp Sci, Odense, Denmark
[2] Helmholtz Zentrum Munchen, Inst Computat Biol, Munich, Germany
[3] Tech Univ Munich, Dept Dermatol & Allergy, Munich, Germany
[4] Univ Southern Denmark, Inst Mol Med, Dept Canc & Inflammat Res, Odense, Denmark
[5] Saarland Univ Campus, Ctr Bioinformat, Saarbrucken, Germany
[6] Univ Southern Denmark, Dept Biochem & Mol Biol, Odense, Denmark
[7] Odense Univ Hosp, Dept Oncol, Odense, Denmark
[8] Ernst Moritz Arndt Univ Greifswald, Inst Math & Comp Sci, Greifswald, Germany
[9] Max Planck Inst Informat, Computat Syst Biol Grp, Saarland Informat Campus, Saarbrucken, Germany
[10] Max Planck Inst Informat, Computat Biol & Appl Algorithm, Saarland Informat Campus, Saarbrucken, Germany
关键词
NETWORK;
D O I
10.1038/s41540-017-0007-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
De novo pathway enrichment is a powerful approach to discover previously uncharacterized molecular mechanisms in addition to already known pathways. To achieve this, condition-specific functional modules are extracted from large interaction networks. Here, we give an overview of the state of the art and present the first framework for assessing the performance of existing methods. We identified 19 tools and selected seven representative candidates for a comparative analysis with more than 12,000 runs, spanning different biological networks, molecular profiles, and parameters. Our results show that none of the methods consistently outperforms the others. To mitigate this issue for biomedical researchers, we provide guidelines to choose the appropriate tool for a given dataset. Moreover, our framework is the first attempt for a quantitative evaluation of de novo methods, which will allow the bioinformatics community to objectively compare future tools against the state of the art.
引用
收藏
页数:8
相关论文
共 43 条
[1]   KeyPathwayMiner 4.0: condition-specific pathway analysis by combining multiple omics studies and networks with Cytoscape [J].
Alcaraz, Nicolas ;
Pauling, Josch ;
Batra, Richa ;
Barbosa, Eudes ;
Junge, Alexander ;
Christensen, Anne G. L. ;
Azevedo, Vasco ;
Ditzel, Henrik J. ;
Baumbach, Jan .
BMC SYSTEMS BIOLOGY, 2014, 8
[2]   Improved scoring of functional groups from gene expression data by decorrelating GO graph structure [J].
Alexa, Adrian ;
Rahnenfuehrer, Joerg ;
Lengauer, Thomas .
BIOINFORMATICS, 2006, 22 (13) :1600-1607
[3]   An integer linear programming approach for finding deregulated subgraphs in regulatory networks [J].
Backes, Christina ;
Rurainski, Alexander ;
Klau, Gunnar W. ;
Mueller, Oliver ;
Stoeckel, Daniel ;
Gerasch, Andreas ;
Kuentzer, Jan ;
Maisel, Daniela ;
Ludwig, Nicole ;
Hein, Matthias ;
Keller, Andreas ;
Burtscher, Helmut ;
Kaufmann, Michael ;
Meese, Eckart ;
Lenhof, Hans-Peter .
NUCLEIC ACIDS RESEARCH, 2012, 40 (06)
[4]   NCBI GEO: archive for functional genomics data sets-update [J].
Barrett, Tanya ;
Wilhite, Stephen E. ;
Ledoux, Pierre ;
Evangelista, Carlos ;
Kim, Irene F. ;
Tomashevsky, Maxim ;
Marshall, Kimberly A. ;
Phillippy, Katherine H. ;
Sherman, Patti M. ;
Holko, Michelle ;
Yefanov, Andrey ;
Lee, Hyeseung ;
Zhang, Naigong ;
Robertson, Cynthia L. ;
Serova, Nadezhda ;
Davis, Sean ;
Soboleva, Alexandra .
NUCLEIC ACIDS RESEARCH, 2013, 41 (D1) :D991-D995
[5]   BioNet: an R-Package for the functional analysis of biological networks [J].
Beisser, Daniela ;
Klau, Gunnar W. ;
Dandekar, Thomas ;
Muller, Tobias ;
Dittrich, Marcus T. .
BIOINFORMATICS, 2010, 26 (08) :1129-1130
[6]   Graph-based iterative Group Analysis enhances microarray interpretation [J].
Breitling, R ;
Amtmann, A ;
Herzyk, P .
BMC BIOINFORMATICS, 2004, 5 (1)
[7]   Online predicted human interaction database [J].
Brown, KR ;
Jurisica, I .
BIOINFORMATICS, 2005, 21 (09) :2076-2082
[8]   Network-based classification of breast cancer metastasis [J].
Chuang, Han-Yu ;
Lee, Eunjung ;
Liu, Yu-Tsueng ;
Lee, Doheon ;
Ideker, Trey .
MOLECULAR SYSTEMS BIOLOGY, 2007, 3 (1)
[9]   Optimally discriminative subnetwork markers predict response to chemotherapy [J].
Dao, Phuong ;
Wang, Kendric ;
Collins, Colin ;
Ester, Martin ;
Lapuk, Anna ;
Sahinalp, S. Cenk .
BIOINFORMATICS, 2011, 27 (13) :I205-I213
[10]   Analysis and correction of crosstalk effects in pathway analysis [J].
Donato, Michele ;
Xu, Zhonghui ;
Tomoiaga, Alin ;
Granneman, James G. ;
MacKenzie, Robert G. ;
Bao, Riyue ;
Than, Nandor Gabor ;
Westfall, Peter H. ;
Romero, Roberto ;
Draghici, Sorin .
GENOME RESEARCH, 2013, 23 (11) :1885-1893