Existence of global solutions;
Camassa-Holm type equation;
Pseudoparabolic regularization method;
SHALLOW-WATER EQUATION;
DEGASPERIS-PROCESI EQUATION;
TRAVELING-WAVE SOLUTIONS;
BLOW-UP PHENOMENA;
WELL-POSEDNESS;
WEAK SOLUTIONS;
INTEGRABLE EQUATION;
SCATTERING PROBLEM;
PEAKON SOLUTIONS;
DGH EQUATION;
D O I:
10.1007/s10114-013-1419-6
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
A fully nonlinear generalization of the Camassa-Holm equation is investigated. Using the pseudoparabolic regularization technique, its local well-posedness in Sobolev space H (s) (a"e) with is established via a limiting procedure. Provided that the initial momentum (1 -a, (x) (2) )u (0) satisfies the sign condition, u (0) a H (s) (a"e) and u (0) epsilon L (1)(a"e), the existence and uniqueness of global solutions for the equation are shown to be true in the space C([0,a);H (s) (a"e)) a (c) C (1)([0,g8);H (s-1)(a"e)).
机构:
Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, ItalyPolitecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
Coclite, Giuseppe Maria
di Ruvo, Lorenzo
论文数: 0引用数: 0
h-index: 0
机构:Politecn Bari, Dipartimento Meccan Matemat & Management, Via E Orabona 4, I-70125 Bari, Italy
机构:
Jiangsu Univ, Dept Math, Zhenjiang 212013, Peoples R China
Chinese Univ Hong Kong, Inst Math Sci, Shatin, Hong Kong, Peoples R ChinaJiangsu Univ, Dept Math, Zhenjiang 212013, Peoples R China
Gui, Guilong
Liu, Yue
论文数: 0引用数: 0
h-index: 0
机构:
Univ Texas Arlington, Dept Math, Arlington, TX 76019 USAJiangsu Univ, Dept Math, Zhenjiang 212013, Peoples R China
Liu, Yue
Zhu, Min
论文数: 0引用数: 0
h-index: 0
机构:
Nanjing Forestry Univ, Dept Math, Nanjing 210037, Jiangsu, Peoples R China
Southeast Univ, Dept Math, Nanjing 210097, Jiangsu, Peoples R ChinaJiangsu Univ, Dept Math, Zhenjiang 212013, Peoples R China