Test-Cost-Sensitive Attribute Reduction of Data with Normal Distribution Measurement Errors

被引:15
作者
Zhao, Hong [1 ]
Min, Fan [1 ]
Zhu, William [1 ]
机构
[1] Zhangzhou Normal Univ, Lab Granular Comp, Zhangzhou 363000, Peoples R China
基金
美国国家科学基金会;
关键词
ROUGH SET; APPROXIMATION; RULES; MODEL;
D O I
10.1155/2013/946070
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The measurement error with normal distribution is universal in applications. Generally, smaller measurement error requires better instrument and higher test cost. In decision making, we will select an attribute subset with appropriate measurement error to minimize the total test cost. Recently, error-range-based covering rough set with uniform distribution error was proposed to investigate this issue. However, the measurement errors satisfy normal distribution instead of uniform distribution which is rather simple for most applications. In this paper, we introduce normal distribution measurement errors to covering-based rough set model and deal with test-cost-sensitive attribute reduction problem in this new model. The major contributions of this paper are fourfold. First, we build a new data model based on normal distribution measurement errors. Second, the covering-based rough set model with measurement errors is constructed through the "3-sigma" rule of normal distribution. With this model, coverings are constructed from data rather than assigned by users. Third, the test-cost-sensitive attribute reduction problem is redefined on this covering-based rough set. Fourth, a heuristic algorithm is proposed to deal with this problem. The experimental results show that the algorithm is more effective and efficient than the existing one. This study suggests new research trends concerning cost-sensitive learning.
引用
收藏
页数:12
相关论文
共 52 条
  • [1] Aggarwal C.C., 2007, P 23 IEEE INT C DATA, P866
  • [2] Bargiela A., 2003, Granular Computing: An Introduction
  • [3] Barot R. B., 2008, P IEEE ANN M N AM FU
  • [4] Bazan J. G., 1994, P 8 INT S METH INT S
  • [5] Bell S., 2001, A Beginner's Guide to Uncertainly o f Measurement
  • [6] Blake C. L., 1998, Uci repository of machine learning databases
  • [7] Granular computing applied to ontologies
    Calegari, Silvia
    Ciucci, Davide
    [J]. INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2010, 51 (04) : 391 - 409
  • [8] Chau M, 2006, LECT NOTES ARTIF INT, V3918, P199
  • [9] A rough set approach to feature selection based on ant colony optimization
    Chen, Yumin
    Miao, Duoqian
    Wang, Ruizhi
    [J]. PATTERN RECOGNITION LETTERS, 2010, 31 (03) : 226 - 233
  • [10] Consistency-based search in feature selection
    Dash, M
    Liu, HA
    [J]. ARTIFICIAL INTELLIGENCE, 2003, 151 (1-2) : 155 - 176