The Hamiltonian structure and Euler-Poincare formulation of the Vlasov-Maxwell and gyrokinetic systems

被引:28
作者
Squire, J. [1 ]
Qin, H. [1 ,2 ]
Tang, W. M. [1 ]
Chandre, C. [3 ]
机构
[1] Princeton Univ, Plasma Phys Lab, Princeton, NJ 08543 USA
[2] Univ Sci & Technol China, Dept Modern Phys, Hefei 230026, Anhui, Peoples R China
[3] Aix Marseille Univ, Ctr Phys Theor, CNRS, F-13009 Marseille, France
关键词
GUIDING-CENTER; CONSERVATION-LAWS; VARIATIONAL PRINCIPLE; POISSON BRACKETS; EQUATIONS; FLUIDS; INTEGRATORS; DYNAMICS; PLASMA; GAUGE;
D O I
10.1063/1.4791664
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We present a new variational principle for the gyrokinetic system, similar to the Maxwell-Vlasov action presented in H. Cendra et al., [J. Math. Phys. 39, 3138 (1998)]. The variational principle is in the Eulerian frame and based on constrained variations of the phase space fluid velocity and particle distribution function. Using a Legendre transform, we explicitly derive the field theoretic Hamiltonian structure of the system. This is carried out with a modified Dirac theory of constraints, which is used to construct meaningful brackets from those obtained directly from Euler-Poincare theory. Possible applications of these formulations include continuum geometric integration techniques, large-eddy simulation models, and Casimir type stability methods. (C) 2013 American Institute of Physics. [http://dx.doi.org/10.1063/1.4791664]
引用
收藏
页数:14
相关论文
共 73 条
[1]  
[Anonymous], 1987, THESIS U CALIFORNIA
[2]  
BERS L, 1957, LECT APPL MATH, V3
[3]   Lagrangian averaging for compressible fluids [J].
Bhat, HS ;
Fetecau, RC ;
Marsden, JE ;
Mohseni, K ;
West, M .
MULTISCALE MODELING & SIMULATION, 2005, 3 (04) :818-837
[4]   Hamilton-Pontryagin Integrators on Lie Groups Part I: Introduction and Structure-Preserving Properties [J].
Bou-Rabee, Nawaf ;
Marsden, Jerrold E. .
FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2009, 9 (02) :197-219
[5]   Numerical methods for Hamiltonian PDEs [J].
Bridges, Thomas J. ;
Reich, Sebastian .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2006, 39 (19) :5287-5320
[6]   Foundations of nonlinear gyrokinetic theory [J].
Brizard, A. J. ;
Hahm, T. S. .
REVIEWS OF MODERN PHYSICS, 2007, 79 (02) :421-468
[7]   Variational principle for nonlinear gyrokinetic Vlasov-Maxwell equations [J].
Brizard, AJ .
PHYSICS OF PLASMAS, 2000, 7 (12) :4816-4822
[8]   New variational principle for the Vlasov-Maxwell equations [J].
Brizard, AJ .
PHYSICAL REVIEW LETTERS, 2000, 84 (25) :5768-5771
[9]   Noether methods for fluids and plasmas [J].
Brizard, AJ .
JOURNAL OF PLASMA PHYSICS, 2005, 71 :225-236
[10]   The Maxwell-Vlasov equations in Euler-Poincare form [J].
Cendra, H ;
Holm, DD ;
Hoyle, MJW ;
Marsden, JE .
JOURNAL OF MATHEMATICAL PHYSICS, 1998, 39 (06) :3138-3157