Common fixed points for some generalized nonexpansive mappings and nonspreading-type mappings in uniformly convex Banach spaces

被引:1
作者
Inthakon, Warunun [1 ,2 ]
Kaewkhao, Attapol [1 ]
Niyamosot, Nutchari [1 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
[2] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
关键词
fixed point; common fixed point; generalized nonexpansive mapping; nonspreading mapping; uniformly convex Banach space; THEOREMS; CONVERGENCE;
D O I
10.1186/1687-1812-2012-110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the fixed point theorems for nonspreading mappings, defined by Kohsaka and Takahashi, in Banach spaces but using the sense of norm instead of using the function I center dot. Furthermore, we prove a weak convergence theorem for finding a common fixed point of two quasi-nonexpansive mappings having demiclosed property in a uniformly convex Banach space. Consequently, such theorem can be deduced to the case of the nonspreading type mappings and some generalized nonexpansive mappings. MSC: 49J40, 47J20.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Fixed point theorems and convergence theorems for generalized nonspreading mappings in Banach spaces [J].
Takahashi, Wataru ;
Wong, Ngai-Ching ;
Yao, Jen-Chih .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2012, 11 (01) :159-183
[42]   THE T-FIXED POINT PROPERTY FOR SOME GENERALIZED NONEXPANSIVE MAPPINGS IN BANACH SPACES [J].
Dehici, Abdelkader ;
Atailia, Sami ;
Redjel, Najeh .
JOURNAL OF NONLINEAR AND CONVEX ANALYSIS, 2024, 25 (07) :1741-1757
[43]   A fixed point theorem for pointwise eventually nonexpansive mappings in nearly uniformly convex Banach spaces [J].
Butsan, T. ;
Dhompongsa, S. ;
Takahashi, W. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2011, 74 (05) :1694-1701
[44]   FIXED POINT THEOREMS FOR A SEMIGROUP OF TOTAL ASYMPTOTICALLY NONEXPANSIVE MAPPINGS IN UNIFORMLY CONVEX BANACH SPACES [J].
Suantai, Suthep ;
Phuengrattana, Withun .
OPUSCULA MATHEMATICA, 2014, 34 (01) :183-197
[45]   GENERALIZED NONEXPANSIVE MULTIVALUED MAPPINGS IN STRICTLY CONVEX BANACH SPACES [J].
Abkar, Ali ;
Eslamian, Mohammad .
FIXED POINT THEORY, 2013, 14 (02) :269-280
[46]   Approximation of Fixed Points for Mean Nonexpansive Mappings in Banach Spaces [J].
Ahmad, Junaid ;
Ullah, Kifayat ;
Arshad, Muhammad ;
de la Sen, Manuel .
JOURNAL OF FUNCTION SPACES, 2021, 2021
[47]   Approximation of fixed points for enriched nonexpansive mappings in Banach spaces [J].
Ullah, Kifayat ;
Ahmad, Junaid ;
Khan, Muhammad Ijaz Ullah ;
Arshad, Muhammad .
FILOMAT, 2024, 38 (12) :4315-4323
[48]   Approximating fixed points of generalized -nonexpansive mappings in Banach spaces by new faster iteration process [J].
Piri, H. ;
Daraby, B. ;
Rahrovi, S. ;
Ghasemi, M. .
NUMERICAL ALGORITHMS, 2019, 81 (03) :1129-1148
[49]   Fixed point theorems and convergence theorems for generalized nonspreading mappings in Banach spaces [J].
Wataru Takahashi ;
Ngai-Ching Wong ;
Jen-Chih Yao .
Journal of Fixed Point Theory and Applications, 2012, 11 :159-183
[50]   Hybrid iteration method for common fixed points of an infinite family of nonexpansive mappings in Banach spaces [J].
Deng, Wei-Qi .
FIXED POINT THEORY AND APPLICATIONS, 2012, :1-7