Common fixed points for some generalized nonexpansive mappings and nonspreading-type mappings in uniformly convex Banach spaces

被引:1
作者
Inthakon, Warunun [1 ,2 ]
Kaewkhao, Attapol [1 ]
Niyamosot, Nutchari [1 ]
机构
[1] Chiang Mai Univ, Fac Sci, Dept Math, Chiang Mai 50200, Thailand
[2] CHE, Ctr Excellence Math, Bangkok 10400, Thailand
关键词
fixed point; common fixed point; generalized nonexpansive mapping; nonspreading mapping; uniformly convex Banach space; THEOREMS; CONVERGENCE;
D O I
10.1186/1687-1812-2012-110
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the fixed point theorems for nonspreading mappings, defined by Kohsaka and Takahashi, in Banach spaces but using the sense of norm instead of using the function I center dot. Furthermore, we prove a weak convergence theorem for finding a common fixed point of two quasi-nonexpansive mappings having demiclosed property in a uniformly convex Banach space. Consequently, such theorem can be deduced to the case of the nonspreading type mappings and some generalized nonexpansive mappings. MSC: 49J40, 47J20.
引用
收藏
页数:11
相关论文
共 17 条
[1]   Fixed point theorems for nonexpansive mappings and Suzuki-generalized nonexpansive mappings on a Banach lattice [J].
Dhompongsa, S. ;
Kaewcharoen, A. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (11) :5344-5353
[2]   Edelstein's method and fixed point theorems for some generalized nonexpansive mappings [J].
Dhompongsa, S. ;
Inthakon, W. ;
Kaewkhao, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 350 (01) :12-17
[3]  
Dhompongsa S, 2011, OPTIMIZATION, V6, P1
[4]   ON STRUCTURE OF SET OF SUBSEQUENTIAL LIMIT POINTS OF SUCCESSIVE APPROXIMATIONS [J].
DIAZ, JB ;
METCALF, FT .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1967, 73 (04) :516-&
[5]   Fixed point theory for a class of generalized nonexpansive mappings [J].
Garcia-Falset, Jesus ;
Llorens-Fuster, Enrique ;
Suzuki, Tomonari .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2011, 375 (01) :185-195
[6]  
Goebel K., 1990, Topics in Metric Fixed Point Theory
[7]  
Iemoto S., 2009, NONLINEAR ANAL OPTIM, P75
[8]   Approximating common fixed points of nonexpansive mappings and nonspreading mappings in a Hilbert space [J].
Iemoto, Shigeru ;
Takahashi, Wataru .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (12) :E2082-E2089
[9]  
Igarashi T., 2009, NONLINEAR ANAL OPTIM, P63
[10]   Fixed point theorems for a class of nonlinear mappings related to maximal monotone operators in Banach spaces [J].
Kohsaka, Fumiaki ;
Takahashi, Wataru .
ARCHIV DER MATHEMATIK, 2008, 91 (02) :166-177