Gaussian processes for time-series modelling

被引:424
作者
Roberts, S. [1 ]
Osborne, M. [1 ]
Ebden, M. [1 ]
Reece, S. [1 ]
Gibson, N. [2 ]
Aigrain, S. [2 ]
机构
[1] Univ Oxford, Dept Engn Sci, Oxford OX1 3PU, England
[2] Univ Oxford, Dept Astrophys, Oxford OX1 3PU, England
来源
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES | 2013年 / 371卷 / 1984期
基金
英国工程与自然科学研究理事会;
关键词
Gaussian processes; time-series analysis; Bayesian modelling;
D O I
10.1098/rsta.2011.0550
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this paper, we offer a gentle introduction to Gaussian processes for time-series data analysis. The conceptual framework of Bayesian modelling for time-series data is discussed and the foundations of Bayesian non-parametric modelling presented for Gaussian processes. We discuss how domain knowledge influences design of the Gaussian process models and provide case examples to highlight the approaches.
引用
收藏
页数:25
相关论文
共 26 条
[1]  
Abrahamsen P, 1997, A review of Gaussian random fields and correlation functions
[2]  
Adams Ryan Prescott, 2007, Bayesian online changepoint detection
[3]  
Alvarez Mauricio, 2009, Artificial Intelligence and Statistics, P9
[4]  
[Anonymous], 2009, P 26 ANN INT C MACHI, DOI [10.1145/1553374.1553418, DOI 10.1145/1553374.1553418]
[5]  
[Anonymous], 1998, Neural Networks and Machine Learning
[6]  
[Anonymous], 1973, Pattern Classification and Scene Analysis
[7]  
[Anonymous], 2006, Pattern recognition and machine learning
[8]  
Chen J., 2000, PARAMETRIC STAT CHAN
[9]   Sequential Bayesian Prediction in the Presence of Changepoints and Faults [J].
Garnett, Roman ;
Osborne, Michael A. ;
Reece, Steven ;
Rogers, Alex ;
Roberts, Stephen J. .
COMPUTER JOURNAL, 2010, 53 (09) :1430-1446
[10]  
Gibson NP, MON NOT R A IN PRESS