Effective dipolar polarizability of amorphous arrays of size-dispersed nanoparticles

被引:7
作者
Czajkowski, Krzysztof M. [1 ]
Antosiewicz, Tomasz J. [1 ]
机构
[1] Univ Warsaw, Fac Phys, Pasteura 5, PL-02093 Warsaw, Poland
关键词
D O I
10.1364/OL.391647
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Inhomogeneity of nanoparticle size, shape, and distribution is ubiquitous and inherent in fabricated arrays or may be a deliberate attempt to engineer the optical response. It leads to a spread of polarizabilities of interacting elements and phases of scattered light, and quantitative understanding of these effects is important. Focusing on random/amorphous arrays of optical antennas, we combine T-matrix calculations and an analytical approach based on an effective dipolar polarizability within a film of dipoles framework to quantify the spectral response as a function of the particle inhomogeneity and stochastic clustering. The interplay of position-dependent stochastic coupling and size distribution of antennas determines the optical properties of such arrays as a function of mean/standard deviation of diameter and minimum separation. The resonance wavelength, amplitude, and scattering-to-absorption ratio exhibit oscillations around their size-averaged values with periods and amplitudes given by average structural factors. (C) 2020 Optical Society of America
引用
收藏
页码:3220 / 3223
页数:4
相关论文
共 31 条
[1]   Localized Surface Plasmon Decay Pathways in Disordered Two-Dimensional Nanoparticle Arrays [J].
Antosiewicz, Tomasz J. ;
Tarkowski, Tomasz .
ACS PHOTONICS, 2015, 2 (12) :1732-1738
[2]   Plasmonic glasses: Optical properties of amorphous metal-dielectric composites [J].
Antosiewicz, Tomasz J. ;
Apell, S. Peter .
OPTICS EXPRESS, 2014, 22 (02) :2032-2043
[3]   Oscillatory Optical Response of an Amorphous Two-Dimensional Array of Gold Nanoparticles [J].
Antosiewicz, Tomasz J. ;
Apell, S. Peter ;
Zach, Michael ;
Zoric, Igor ;
Langhammer, Christoph .
PHYSICAL REVIEW LETTERS, 2012, 109 (24)
[4]   Collective resonances in gold nanoparticle arrays [J].
Auguie, Baptiste ;
Barnes, William L. .
PHYSICAL REVIEW LETTERS, 2008, 101 (14)
[5]   Analytical model of resonant electromagnetic dipole-quadrupole coupling in nanoparticle arrays [J].
Babicheva, Viktoriia E. ;
Evlyukhin, Andrey B. .
PHYSICAL REVIEW B, 2019, 99 (19)
[6]   Extended Maxwell-Garnett-Mie formulation applied to size dispersion of metallic nanoparticles embedded in host liquid matrix [J].
Battie, Y. ;
Resano-Garcia, A. ;
Chaoui, N. ;
Zhang, Y. ;
Naciri, A. En .
JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (04)
[7]   Correlated Disordered Plasmonic Nanostructures Arrays for Augmented Reality [J].
Bertin, Herve ;
Brule, Yoann ;
Magno, Giovanni ;
Lopez, Thomas ;
Gogol, Philippe ;
Pradere, Laetitia ;
Gralak, Boris ;
Barat, David ;
Demesy, Guillaume ;
Dagens, Beatrice .
ACS PHOTONICS, 2018, 5 (07) :2661-+
[8]   Plasmonic Glasses and Films Based on Alternative Inexpensive Materials for Blocking Infrared Radiation [J].
Besteiro, Lucas, V ;
Kong, Xiang-Tian ;
Wang, Zhiming ;
Rosei, Federico ;
Govorov, Alexander O. .
NANO LETTERS, 2018, 18 (05) :3147-3156
[9]   Plasmonic versus All-Dielectric Nanoantennas for Refractometric Sensing: A Direct Comparison [J].
Bosio, Noemi ;
Sipova-Jungova, Hana ;
Lank, Nils Odebo ;
Antosiewicz, Tomasz J. ;
Verre, Ruggero ;
Kall, Mikael .
ACS PHOTONICS, 2019, 6 (06) :1556-1564
[10]  
Brongersma ML, 2015, NAT NANOTECHNOL, V10, P25, DOI [10.1038/nnano.2014.311, 10.1038/NNANO.2014.311]