Gorenstein Projective Modules Over a Class of Generalized Matrix Algebras and their Applications

被引:6
作者
Li, Fang [1 ]
Ye, Chang [1 ]
机构
[1] Zhejiang Univ, Dept Math, Hangzhou 310027, Zhejiang, Peoples R China
基金
中国国家自然科学基金; 高等学校博士学科点专项科研基金;
关键词
Generalized matrix algebra; Generalized path algebra; Path algebra of quiver over an algebra; Gorenstein projective module; Strongly Gorenstein projective module;
D O I
10.1007/s10468-014-9512-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we introduce a class of generalized matrix algebras, in which each algebra is called a normally upper triangular gm algebra, and characterise Gorenstein projective modules over this class of algebras. Moreover, a sufficient condition of strongly Gorenstein projective modules over normally upper triangular gm algebras is given. The importance of normally upper triangular gm algebras for us is that it includes the so-called path algebras of quivers over algebras and generalized path algebras. Due to this, we characterize Gorenstein projective modules and strongly Gorenstein projective modules over path algebras of quivers over algebras and generalized path algebras as applications of the main results on normally upper triangular gm algebras. At last, we give an example to show how all indecomposable Gorenstein projective modules over a given algebra are constructed by the result on generalized path algebras.
引用
收藏
页码:693 / 710
页数:18
相关论文
共 10 条
[1]  
Auslander M., 1969, MEM AM MATH SOC, V94
[2]   Strongly Gorenstein projective, injective, and flat modules [J].
Bennis, Driss ;
Mahdou, Najib .
JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 210 (02) :437-445
[3]  
Coelho FU, 2000, LECT NOTES PURE APPL, V210, P53
[4]   STRONGLY GORENSTEIN PROJECTIVE MODULES OVER UPPER TRIANGULAR MATRIX ARTIN ALGEBRAS [J].
Gao, Nan ;
Zhang, Pu .
COMMUNICATIONS IN ALGEBRA, 2009, 37 (12) :4259-4268
[5]  
Cobos RMI, 2008, REV ROUM MATH PURES, V53, P25
[6]   MODULATION AND NATURAL VALUED QUIVER OF AN ALGEBRA [J].
Li, Fang .
PACIFIC JOURNAL OF MATHEMATICS, 2012, 256 (01) :105-128
[7]  
Luo X., 2013, PAC J MATH, V264
[8]  
ZHANG SC, 1993, PROCEEDINGS OF THE SIXTH SIAM CONFERENCE ON PARALLEL PROCESSING FOR SCIENTIFIC COMPUTING, VOLS 1 AND 2, P546
[9]   Structures and representations of generalized path algebras [J].
Zhang, Shouchuan ;
Zhang, Yao-Zhong .
ALGEBRAS AND REPRESENTATION THEORY, 2007, 10 (02) :117-134
[10]  
Zhu H., GABRIEL THEORE UNPUB