EvoMS: An evolutionary tool to find de novo metabolic pathways

被引:4
|
作者
Gerard, Matias F. [1 ]
Stegmayer, Georgina [1 ]
Milone, Diego H. [1 ]
机构
[1] FICH UNL CONICET, Res Inst Signals Syst & Computat Intelligence Sin, Santa Fe, Argentina
关键词
Evolutionary algorithms; Metabolic network representation; Metabolic pathway searching; Pathway synthesis; NETWORKS; KEGG;
D O I
10.1016/j.biosystems.2015.04.006
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The evolutionary metabolic synthesizer (EvoMS) is an evolutionary tool capable of finding novel metabolic pathways linking several compounds through feasible reactions. It allows system biologists to explore different alternatives for relating specific metabolites, offering the possibility of indicating the initial compound or allowing the algorithm to automatically select it. Searching process can be followed graphically through several plots of the evolutionary process. Metabolic pathways found are displayed in a web browser as directed graphs. In all cases, solutions are networks of reactions that produce linear or branched metabolic pathways which are feasible from the specified set of available compounds. Source code of EvoMS is available at http://sourceforge.net/projects/sourcesinc/files/evoms/. Subsets of reactions are provided, as well as four examples for searching metabolic pathways among several compounds. Available as a web service at http://fich.unl.edu.ar/sinc/web-demo/evoms/. (C) 2015 Elsevier Ireland Ltd. All rights reserved.
引用
收藏
页码:43 / 47
页数:5
相关论文
共 16 条
  • [1] Evolutionary algorithm for metabolic pathways synthesis
    Gerard, Matias F.
    Stegmayer, Georgina
    Milone, Diego H.
    BIOSYSTEMS, 2016, 144 : 55 - 67
  • [2] An evolutionary approach for searching metabolic pathways
    Gerard, Matias F.
    Stegmayer, Georgina
    Milone, Diego H.
    COMPUTERS IN BIOLOGY AND MEDICINE, 2013, 43 (11) : 1704 - 1712
  • [3] Evolutionary algorithms and de novo peptide design
    Belda, I
    Llorá, X
    Giralt, E
    SOFT COMPUTING, 2006, 10 (04) : 295 - 304
  • [4] Evolutionary algorithms and de novo peptide design
    I. Belda
    X. Llorà
    E. Giralt
    Soft Computing, 2006, 10 : 295 - 304
  • [5] Trace of Evolutionary Evidence by Analyzing Clustering Information of Metabolic Pathways in Eukaryotes
    Rhie, Arang
    Jang, Myungha
    Park, Hyun-Seok
    2010 IEEE INTERNATIONAL CONFERENCE ON BIOINFORMATICS AND BIOMEDICINE WORKSHOPS (BIBMW), 2010, : 862 - 863
  • [6] ENPDA:: an evolutionary structure-based de novo peptide design algorithm
    Belda, I
    Madurga, S
    Llorà, X
    Martinell, M
    Tarragó, T
    Piqueras, MG
    Nicolás, E
    Giralt, E
    JOURNAL OF COMPUTER-AIDED MOLECULAR DESIGN, 2005, 19 (08) : 585 - 601
  • [7] ENPDA: an evolutionary structure-based de novo peptide design algorithm
    Ignasi Belda
    Sergio Madurga
    Xavier Llorà
    Marc Martinell
    Teresa Tarragó
    Mireia G. Piqueras
    Ernesto Nicolás
    Ernest Giralt
    Journal of Computer-Aided Molecular Design, 2005, 19 : 585 - 601
  • [8] PEMPS: a phylogenetic software tool to model the evolution of metabolic pathways
    McCloskey, Nicholas S.
    Mammedova, Ayna
    Liberles, David A.
    BMC BIOINFORMATICS, 2024, 25 (01):
  • [9] PathwayPilot: A User-Friendly Tool for Visualizing and Navigating Metabolic Pathways
    Vande Moortele, Tibo
    Verschaffelt, Pieter
    Huang, Qingyao
    Doncheva, Nadezhda T.
    Holstein, Tanja
    Jachmann, Caroline
    Dawyndt, Peter
    Martens, Lennart
    Mesuere, Bart
    van den Bossche, Tim
    MOLECULAR & CELLULAR PROTEOMICS, 2025, 24 (03)
  • [10] Transcriptome sequencing and de novo assembly in red raspberry fruit development to elucidates the secondary metabolite pathways
    Kang, Xiaojun
    Li, Wenxin
    Zhang, Xuemei
    Tang, Yiwei
    Zhao, Zhilei
    Gu, Yuhong
    Qi, Guohui
    Guo, Suping
    JOURNAL OF BERRY RESEARCH, 2020, 10 (03) : 497 - 511