Restricted 132-avoiding k-ary words, Chebyshev polynomials, and continued fractions

被引:5
作者
Mansour, T [1 ]
机构
[1] Univ Haifa, Dept Math, IL-31905 Haifa, Israel
[2] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
关键词
forbidden subsequence; k-ary words; restricted k-ary words; Chebyshev polynomials; continued fractions;
D O I
10.1016/j.aam.2005.04.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study generating functions for the number of n-long k-ary words that avoid both 132 and an arbitrary l-ary pattern. In several interesting cases the generating function depends only on P and is expressed via Chebyshev polynomials of the second kind and continued fractions. (c) 2005 Elsevier Inc. All rights reserved.
引用
收藏
页码:175 / 193
页数:19
相关论文
共 10 条
[1]  
BRANDEN P, 2004, P 16 C FORM POW SER
[2]  
BURSTEIN A, 1998, THESIS U PENNSYLVANI
[3]   Forbidden subsequences and Chebyshev polynomials [J].
Chow, T ;
West, J .
DISCRETE MATHEMATICS, 1999, 204 (1-3) :119-128
[4]   Permutations with restricted patterns and Dyck paths [J].
Krattenthaler, C .
ADVANCES IN APPLIED MATHEMATICS, 2001, 27 (2-3) :510-530
[5]   Restricted 132-avoiding permutations [J].
Mansour, T ;
Vainshtein, A .
ADVANCES IN APPLIED MATHEMATICS, 2001, 26 (03) :258-269
[6]  
MANSOUR T, 2002, LOTHARINGIEN COMBIN, V47
[7]  
Mansour T., 2001, ANN COMB, V5, P451
[8]  
Mansour T., 2000, ELECTRON J COMB, V7, pR17
[9]  
Rivlin T. J., 2020, Chebyshev Polynomials
[10]  
[No title captured]