Classifying the pole of an amplitude using a deep neural network

被引:15
作者
Sombillo, Denny Lane B. [1 ,2 ]
Ikeda, Yoichi [3 ]
Sato, Toru [2 ]
Hosaka, Atsushi [2 ]
机构
[1] Univ Philippines Diliman, Natl Inst Phys, Quezon City 1101, Philippines
[2] Osaka Univ, Res Ctr Nucl Phys RCNP, Osaka 5670047, Japan
[3] Kyushu Univ, Dept Phys, Fukuoka 8190395, Japan
来源
PHYSICAL REVIEW D | 2020年 / 102卷 / 01期
关键词
ANALYTIC PROPERTIES; S-MATRIX; SCATTERING;
D O I
10.1103/PhysRevD.102.016024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Most of the exotic resonances observed in the past decade appear as a peak structure near some threshold. These near-threshold phenomena can be interpreted as genuine resonant states or enhanced threshold cusps. Apparently, there is no straightforward way of distinguishing the two structures. In this work, we employ the strength of deep feed-forward neural network in classifying objects with almost similar features. We construct a neural network model with scattering amplitude as input and the nature of a pole causing the enhancement as output. The training data is generated by an S-matrix satisfying the unitarity and analyticity requirements. Using the separable potential model, we generate a validation data set to measure the network's predictive power. We find that our trained neural network model gives high accuracy when the cutoff parameter of the validation data is within 400-800 MeV. As a final test, we use the Nijmegen partial wave and potential models for nucleon-nucleon scattering and show that the network gives the correct nature of the pole.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Characteristics of L-band (1.5 GHz) and VHF (244 MHz) amplitude scintillations recorded at Kolkata during 1996-2006 and development of models for the occurrence probability of scintillations using neural network [J].
Das, A. ;
Das Gupta, A. ;
Ray, S. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2010, 72 (9-10) :685-704
[32]   Retrieval and Assessment of Significant Wave Height from CYGNSS Mission Using Neural Network [J].
Wang, Feng ;
Yang, Dongkai ;
Yang, Lei .
REMOTE SENSING, 2022, 14 (15)
[33]   Predicting Macro Basis Functions for Method of Moments Scattering Problems Using Deep Neural Networks [J].
Key, Cam ;
Notaros, Branislav .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2021, 20 (07) :1200-1204
[34]   Deep learning for simultaneous phase and amplitude identification in coherent beam combination [J].
Chernikov, Fedor ;
Xie, Yunhui ;
Grant-Jacob, James A. ;
Liu, Yuchen ;
Zervas, Michalis N. ;
Mills, Ben .
SCIENTIFIC REPORTS, 2025, 15 (01)
[35]   Deep residual fully connected neural network classification of Compton camera based prompt gamma imaging for proton radiotherapy [J].
Barajas, Carlos A. A. ;
Polf, Jerimy C. C. ;
Gobbert, Matthias K. K. .
FRONTIERS IN PHYSICS, 2023, 11
[36]   Development of a deep rectifier neural network for fluid volume fraction prediction in multiphase flows by gamma-ray densitometry [J].
Salgado, Cesar M. ;
Dam, Roos S. F. ;
Salgado, William L. ;
Santos, Marcelo C. ;
Schirru, Roberto .
RADIATION PHYSICS AND CHEMISTRY, 2021, 189
[37]   Efficient multi-angle polarimetric inversion of aerosols and ocean color powered by a deep neural network forward model [J].
Gao, Meng ;
Franz, Bryan A. ;
Knobelspiesse, Kirk ;
Zhai, Peng-Wang ;
Martins, Vanderlei ;
Burton, Sharon ;
Cairns, Brian ;
Ferrare, Richard ;
Gales, Joel ;
Hasekamp, Otto ;
Hu, Yongxiang ;
Ibrahim, Amir ;
McBride, Brent ;
Puthukkudy, Anin ;
Werdell, P. Jeremy ;
Xu, Xiaoguang .
ATMOSPHERIC MEASUREMENT TECHNIQUES, 2021, 14 (06) :4083-4110
[38]   Improved the Impact of SST for HY-2A Scatterometer Measurements by Using Neural Network Model [J].
Wang, Jing ;
Xie, Xuetong ;
Deng, Ruru ;
Li, Jiayi ;
Tang, Yuming ;
Liang, Yeheng ;
Guo, Yu .
SENSORS, 2023, 23 (10)
[39]   Polarization-based underwater image enhancement using the neural network of Mueller matrix images [J].
Cheng, Haoyuan ;
Chu, Jinkui ;
Chen, Yongtai ;
Liu, Jianying ;
Gong, Wenzhe .
JOURNAL OF MODERN OPTICS, 2022, 69 (05) :264-271
[40]   Application of deep neural networks for multiples attenuation [J].
Song Huan ;
Mao WeiJian ;
Tang HuanHuan .
CHINESE JOURNAL OF GEOPHYSICS-CHINESE EDITION, 2021, 64 (08) :2795-2808