Classifying the pole of an amplitude using a deep neural network

被引:15
作者
Sombillo, Denny Lane B. [1 ,2 ]
Ikeda, Yoichi [3 ]
Sato, Toru [2 ]
Hosaka, Atsushi [2 ]
机构
[1] Univ Philippines Diliman, Natl Inst Phys, Quezon City 1101, Philippines
[2] Osaka Univ, Res Ctr Nucl Phys RCNP, Osaka 5670047, Japan
[3] Kyushu Univ, Dept Phys, Fukuoka 8190395, Japan
关键词
ANALYTIC PROPERTIES; S-MATRIX; SCATTERING;
D O I
10.1103/PhysRevD.102.016024
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Most of the exotic resonances observed in the past decade appear as a peak structure near some threshold. These near-threshold phenomena can be interpreted as genuine resonant states or enhanced threshold cusps. Apparently, there is no straightforward way of distinguishing the two structures. In this work, we employ the strength of deep feed-forward neural network in classifying objects with almost similar features. We construct a neural network model with scattering amplitude as input and the nature of a pole causing the enhancement as output. The training data is generated by an S-matrix satisfying the unitarity and analyticity requirements. Using the separable potential model, we generate a validation data set to measure the network's predictive power. We find that our trained neural network model gives high accuracy when the cutoff parameter of the validation data is within 400-800 MeV. As a final test, we use the Nijmegen partial wave and potential models for nucleon-nucleon scattering and show that the network gives the correct nature of the pole.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Interactive Simulation of Scattering Effects in Participating Media Using a Neural Network Model [J].
Ge, Liangsheng ;
Wang, Beibei ;
Wang, Lu ;
Meng, Xiangxu ;
Holzschuch, Nicolas .
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2021, 27 (07) :3123-3134
[22]   Predicting Models for Local Sedimentary Basin Effect Using a Convolutional Neural Network [J].
Yang, Xiaomei ;
Hu, Miao ;
Chen, Xin ;
Teng, Shuai ;
Chen, Gongfa ;
Bassir, David .
APPLIED SCIENCES-BASEL, 2023, 13 (16)
[23]   Semisupervised Deep Convolutional Neural Networks Using Pseudo Labels for PolSAR Image Classification [J].
Fang, Zheng ;
Zhang, Gong ;
Dai, Qijun ;
Kong, Yingying ;
Wang, Peng .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[24]   Damage identification using wave damage interaction coefficients predicted by deep neural networks [J].
Humer, Christoph ;
Holl, Simon ;
Kralovec, Christoph ;
Schagerl, Martin .
ULTRASONICS, 2022, 124
[25]   Identification of Ultra High Frequency Acoustic Coda Waves Using Deep Neural Networks [J].
Thati, Venu Babu ;
Smagin, Nikolay ;
Dahmani, Hatem ;
Carlier, Julien ;
Alouani, Ihsen .
IEEE SENSORS JOURNAL, 2021, 21 (18) :20640-20647
[26]   PolSAR Image Classification Based on Deep Convolutional Neural Networks Using Wavelet Transformation [J].
Jamali, Ali ;
Mahdianpari, Masoud ;
Mohammadimanesh, Fariba ;
Bhattacharya, Avik ;
Homayouni, Saeid .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
[27]   Estimating the model parameters for remote sensing reflectance pixel by pixel: a neural network approach for optically deep waters [J].
Chen, Jun ;
Dou, Xianhui ;
He, Xianqiang ;
Xu, Min ;
Li, Xinyue ;
Pan, Delu .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2023, 44 (15) :4666-4683
[28]   Deep Neural Network Assisted Distributed Strain and Temperature Fiber Sensor System for Natural Gas Pipeline Monitoring [J].
Lalam, Nageswara ;
Bhatta, Hari ;
Bukka, Sandeep Reddy ;
Zhang, Pengdi ;
Diemler, Nathan ;
Shumski, Alexander ;
Ohodnicki, Paul R. ;
Buric, Michael P. ;
Wright, Ruishu F. .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[29]   Deep learning framework for disentangling triangle singularity and pole-based enhancements [J].
Co, Darwin Alexander O. ;
Chavez, Vince Angelo A. ;
Sombillo, Denny Lane B. .
PHYSICAL REVIEW D, 2024, 110 (11)
[30]   Characteristics of L-band (1.5 GHz) and VHF (244 MHz) amplitude scintillations recorded at Kolkata during 1996-2006 and development of models for the occurrence probability of scintillations using neural network [J].
Das, A. ;
Das Gupta, A. ;
Ray, S. .
JOURNAL OF ATMOSPHERIC AND SOLAR-TERRESTRIAL PHYSICS, 2010, 72 (9-10) :685-704