Dimension in topological structures: Topological closure and local property

被引:2
作者
Fornasiero, Antongiulio [1 ]
Halupczok, Immanuel [1 ]
机构
[1] Inst Math Log, D-48149 Munster, Germany
来源
GROUPS AND MODEL THEORY | 2012年 / 576卷
关键词
Topological structure; dimension;
D O I
10.1090/conm/576/11335
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let K be a first-order structure with a dimension function, satisfying some natural conditions. Let A be a definable set. If every point in A has a definable neighborhood in A with dimension less than p, then A has dimension less than p.
引用
收藏
页码:89 / 94
页数:6
相关论文
共 9 条
[1]   Fields with analytic structure [J].
Cluckers, R. ;
Lipshitz, L. .
JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2011, 13 (04) :1147-1223
[2]   b-Minimality [J].
Cluckers, Raf ;
Loeser, Francois .
JOURNAL OF MATHEMATICAL LOGIC, 2007, 7 (02) :195-227
[3]   Dimensions, matroids, and dense pairs of first-order structures [J].
Fornasiero, Antongiulio .
ANNALS OF PURE AND APPLIED LOGIC, 2011, 162 (07) :514-543
[4]  
Fornasiero Antongiulio, 2010, LOCALLY O MINI UNPUB
[5]  
Fornasiero Antongiulio, 2010, D MINIMAL STRU UNPUB
[6]  
Fornasiero Antongiulio, 2011, EXPANSIONS REA UNPUB
[7]   1ST ORDER TOPOLOGICAL STRUCTURES AND THEORIES [J].
PILLAY, A .
JOURNAL OF SYMBOLIC LOGIC, 1987, 52 (03) :763-778
[8]   DIMENSION OF DEFINABLE SETS, ALGEBRAIC BOUNDEDNESS AND HENSELIAN FIELDS [J].
VANDENDRIES, L .
ANNALS OF PURE AND APPLIED LOGIC, 1989, 45 (02) :189-209
[9]  
Yin Yimu, 2010, FREIMANS CONJECTURE