Is a Bose-Einstein condensate a good candidate for dark matter? A test with galaxy rotation curves

被引:11
作者
Castellanos, Elias [1 ]
Escamilla-Rivera, Celia [2 ]
Mastache, Jorge [1 ,3 ]
机构
[1] Univ Autonoma Chiapas, Mesoamer Ctr Theoret Phys, Carretera Zapata Km 4, Tuxtla Gutierrez 29040, Chiapas, Mexico
[2] Univ Nacl Autonoma Mexico, Inst Ciencias Nucl, Circuito Exterior CU, AP 70-543, Mexico City 04510, DF, Mexico
[3] Consejo Nacl Ciencia & Technol, Av Insurgentes 1582, Del Benito Juarez, Mexico
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS D | 2020年 / 29卷 / 09期
关键词
Dark matter; galaxy rotation curves; Bose-Einstein condensate; TIME PHASE-TRANSITION; MODEL SELECTION; GALACTIC HALO; SCALAR FIELDS;
D O I
10.1142/S0218271820500637
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We analyze the rotation curves that correspond to a Bose-Einstein Condensate (BEC)-type halo surrounding a Schwarzschild-type black hole to confront predictions of the model upon observations of galaxy rotation curves.We model the halo as a BEC in terms of a massive scalar field that satisfies a Klein-Gordon equation with a self-interaction term. We also assume that the bosonic cloud is not self-gravitating. To model the halo, we apply a simple form of the Thomas-Fermi approximation that allows us to extract relevant results with a simple and concise procedure. Using galaxy data from a subsample of SPARC data base, we find the best fits of the BEC model by using the Thomas{Fermi approximation and perform a Bayesian statistics analysis to compare the obtained BEC's scenarios with the Navarro-Frenk-White (NFW) model as pivot model. We find that in the centre of galaxies, we must have a supermassive compact central object, i.e. supermassive black hole, in the range of log(10) M/M-circle dot = 11.08 +/- 0.43 which condensate a boson cloud with average particle mass M-Phi = (3.47 +/- 1.43) x 10 (23) eV and a self-interaction coupling constant log(10) (lambda vertical bar pc(-1)vertical bar) = -91.09 +/- 0.74, i.e. the system behaves as a weakly interacting BEC. We compare the BEC model with NFW concluding that in general the BEC model using the Thomas{Fermi approximation is strong enough compared with the NFW fittings. Moreover, we show that BECs still well-fit the galaxy rotation curves and, more importantly, could lead to an understanding of the dark matter nature from first principles.
引用
收藏
页数:24
相关论文
共 51 条
[1]  
[Anonymous], 1998, THEORY PROBABILITY
[2]  
[Anonymous], 2013, Polyhedron
[3]  
[Anonymous], 2002, Bose-Einstein Condensation in Dilute Gases
[4]   Bose-Einstein condensation of relativistic Scalar Field Dark Matter [J].
Arturo Urena-Lopez, L. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2009, (01)
[5]   The Supernova Legacy Survey:: measurement of ΩM, ΩΛ and w from the first year data set [J].
Astier, P ;
Guy, J ;
Regnault, N ;
Pain, R ;
Aubourg, E ;
Balam, D ;
Basa, S ;
Carlberg, RG ;
Fabbro, S ;
Fouchez, D ;
Hook, IM ;
Howell, DA ;
Lafoux, H ;
Neill, JD ;
Palanque-Delabrouille, N ;
Perrett, K ;
Pritchet, CJ ;
Rich, J ;
Sullivan, M ;
Taillet, R ;
Aldering, G ;
Antilogus, P ;
Arsenijevic, V ;
Balland, C ;
Baumont, S ;
Bronder, J ;
Courtois, H ;
Ellis, RS ;
Filiol, M ;
Gonçalves, AC ;
Goobar, A ;
Guide, D ;
Hardin, D ;
Lusset, V ;
Lidman, C ;
McMahon, R ;
Mouchet, M ;
Mourao, A ;
Perlmutter, S ;
Ripoche, P ;
Tao, C ;
Walton, N .
ASTRONOMY & ASTROPHYSICS, 2006, 447 (01) :31-U31
[6]  
Barranco J., ARXIV170403450
[7]   Schwarzschild Black Holes can Wear Scalar Wigs [J].
Barranco, Juan ;
Bernal, Argelia ;
Carlos Degollado, Juan ;
Diez-Tejedor, Alberto ;
Megevand, Miguel ;
Alcubierre, Miguel ;
Nunez, Dario ;
Sarbach, Olivier .
PHYSICAL REVIEW LETTERS, 2012, 109 (08)
[8]  
Bayes T., 1763, Biometrika, V53, P370
[9]   RELATIVISTIC BOSE-GAS [J].
BERNSTEIN, J ;
DODELSON, S .
PHYSICAL REVIEW LETTERS, 1991, 66 (06) :683-686
[10]   Can dark matter be a Bose-Einstein condensate? [J].
Bohmer, C. G. ;
Harko, T. .
JOURNAL OF COSMOLOGY AND ASTROPARTICLE PHYSICS, 2007, (06)