Liquid-vapour phase diagram and surface tension of the Lennard-Jones core-softened fluid

被引:6
|
作者
Torres-Carbajal, Alexis [1 ]
Adriana Nicasio-Collazo, Luz [1 ]
Trejos M, Victor M. [2 ]
Ramirez-Gonzalez, Pedro E. [3 ]
机构
[1] Univ Autonoma San Luis Potosi, Inst Fis Manuel Sandoval Vallarta, Alvaro Obregon 64, San Luis Potosi 78000, San Luis Potosi, Mexico
[2] Univ Autonoma Estado Hidalgo, Inst Ciencias Basicas & Ingn, Carretera Pachuca Tulancingo Km 4-5, Mineral De La Reforma 42184, Hidalgo, Mexico
[3] Univ Autonoma San Luis Potosi, Inst Fis Manuel Sandoval Vallarta, CONACYT, Alvaro Obregon 64, San Luis Potosi 78000, San Luis Potosi, Mexico
关键词
Lennard-Jones core-softened; Phase diagram; Surface tension; Corresponding states; Molecular Dynamics; MOLECULAR-DYNAMICS SIMULATION; CORRESPONDING STATES; TRANSITIONS; COEXISTENCE; INTERFACE; ANOMALIES; MODEL; WATER; EQUILIBRIA; COLLAPSE;
D O I
10.1016/j.molliq.2020.113539
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
In the present work, we consider different fluids described by the same functional form of the Lennard-Jones core-softened (LJCS) truncated and shifted interaction potential, which covers fluids from double well to single well and repulsive shoulder. The liquid-vapour phase diagram and surface tension is studied by means of Molecular Dynamics simulation in the canonical ensemble. Density profiles, orthobaric densities, vapour pressure, surface tension and critical points are investigated. The systematic determination of interface properties allows us to elucidate the influence of a second characteristic length in the interaction potential. Simulation results are analysed in the framework of the principle of corresponding states, and it is shown that the liquid-vapour coexistence satisfies the principle at a certain degree. Finally, we demonstrate that fluids with lambda < 0 follow the Ising universality class. (C) 2020 Elsevier B.V. All rights reserved.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Surface Tension of the Liquid-Vapor Interface of the Lennard-Jones Fluids from the Ising Model
    Kulinskii, V. L.
    Maslechko, A.
    JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (16) : 8790 - 8803
  • [22] The role of the anisotropy on the solid-fluid phase transition in core-softened shoulder-dumbbells systems
    Gavazzoni, Cristina
    Gonzatti, Guilherme K.
    Pereira, Luiz Felipe
    Coelho Ramos, Luis Henrique
    Netz, Paulo A.
    Barbosa, Marcia C.
    JOURNAL OF CHEMICAL PHYSICS, 2014, 140 (15)
  • [23] Surface tension of hydrocarbon chains at the liquid-vapour interface
    Noe Mendoza, Francisco
    Lopez-Rendon, Roberto
    Lopez-Lemus, Jorge
    Cruz, Julian
    Alejandre, Jose
    MOLECULAR PHYSICS, 2008, 106 (08) : 1055 - 1059
  • [24] Condensation of the Lennard-Jones fluid on the basis of the Gibbs single-phase approach
    Ushcats, M. V.
    JOURNAL OF CHEMICAL PHYSICS, 2013, 138 (09)
  • [25] Competing interactions near the liquid-liquid phase transition of core-softened water/methanol mixtures
    Marques, Murilo Sodre
    Hernandes, Vinicius Fonseca
    Lomba, Enrique
    Bordin, Jose Rafael
    JOURNAL OF MOLECULAR LIQUIDS, 2020, 320
  • [26] Liquid-solid phase transition in the Lennard-Jones system
    Khrapak, Sergey A.
    Chaudhuri, Manis
    Morfill, Gregor E.
    PHYSICAL REVIEW B, 2010, 82 (05)
  • [27] Liquid-crystal phase equilibria of Lennard-Jones chains
    Rivera, Bernardo Oyarzun
    van Westen, Thijs
    Vlugt, Thijs J. H.
    MOLECULAR PHYSICS, 2016, 114 (06) : 895 - 908
  • [28] Phase Diagram of Kob-Andersen-Type Binary Lennard-Jones Mixtures
    Pedersen, Ulf R.
    Schroder, Thomas B.
    Dyre, Jeppe C.
    PHYSICAL REVIEW LETTERS, 2018, 120 (16)
  • [29] Molecular Dynamics Simulation of Tolman Length and Interfacial Tension of Symmetric Binary Lennard-Jones Liquid
    Kanda, Hideki
    Wahyudiono
    Goto, Motonobu
    SYMMETRY-BASEL, 2021, 13 (08):
  • [30] Comprehensive study of the vapour-liquid equilibria of the pure two-centre Lennard-Jones plus pointquadrupole fluid
    Stoll, J
    Vrabec, J
    Hasse, H
    Fischer, J
    FLUID PHASE EQUILIBRIA, 2001, 179 (1-2) : 339 - 362