GPU Implementation of Composite Kernels for Hyperspectral Image Classification

被引:16
|
作者
Wu, Zebin [1 ,2 ]
Liu, Jiafu [1 ]
Plaza, Antonio [2 ]
Li, Jun [3 ,4 ]
Wei, Zhihui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Extremadura, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Ctr Integrated Geog Informat Anal, Sch Geog & Planning, Guangzhou 510275, Guangdong, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Composite kernels; graphics processing units (GPUs); hyperspectral classification; support vector machines (SVMs);
D O I
10.1109/LGRS.2015.2441631
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we present an efficient parallel implementation of composite kernels in support vector machines (SVMs) for hyperspectral image (HSI) classification. Our implementation makes effective use of commodity graphics processing units (GPUs). Specifically, we port the calculation of composite kernels to GPUs, perform intensive computations based on NVidia's compute unified device architecture, and execute the rest of the operations related with control and small data calculations in the CPU. Our experimental results, conducted using real hyperspectral data sets and NVidia GPU platforms, indicate significant improvements in terms of computational effectiveness, achieving near-real-time performance of spatial-spectral HSI classification for the first time in the literature.
引用
收藏
页码:1973 / 1977
页数:5
相关论文
共 50 条
  • [31] Convolutional Neural Networks Based Hyperspectral Image Classification Method with Adaptive Kernels
    Ding, Chen
    Li, Ying
    Xia, Yong
    Wei, Wei
    Zhang, Lei
    Zhang, Yanning
    REMOTE SENSING, 2017, 9 (06)
  • [32] GCN: GPU-based Cube CNN Framework for Hyperspectral Image Classification
    Dong, Han
    Li, Tao
    Leng, Jiabing
    Kong, Lingyan
    Bai, Gang
    2017 46TH INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING (ICPP), 2017, : 41 - 49
  • [33] The Design and Implementation of a Verification Technique for GPU Kernels
    Betts, Adam
    Chong, Nathan
    Donaldson, Alastair F.
    Ketema, Jeroen
    Qadeer, Shaz
    Thomson, Paul
    Wickerson, John
    ACM TRANSACTIONS ON PROGRAMMING LANGUAGES AND SYSTEMS, 2015, 37 (03):
  • [34] Cloud Implementation of Extreme Learning Machine for Hyperspectral Image Classification
    Haut, Juan M. M.
    Moreno-Alvarez, Sergio
    Moreno-Avila, Enrique
    Ayma, Victor A. A.
    Pastor-Vargas, R.
    Paoletti, Mercedes E. E.
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20
  • [35] Texture Profiles and Composite Kernel Frame for Hyperspectral Image Classification
    Wang, Cailing
    Wang, Hongwei
    Ren, Jinchang
    Zhang, Yinyong
    Wen, Jia
    Zhao, Jing
    ADVANCES IN BRAIN INSPIRED COGNITIVE SYSTEMS, BICS 2018, 2018, 10989 : 325 - 333
  • [36] FPGA Acceleration of a Composite Kernel SVM for Hyperspectral Image Classification
    Tajiri, Kento
    Maruyama, Tsutomu
    IEEE ACCESS, 2023, 11 : 214 - 226
  • [37] SUPERPIXEL-BASED COMPOSITE KERNEL FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Duan, Wuhui
    Li, Shutao
    Fang, Leyuan
    2015 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2015, : 1698 - 1701
  • [38] Hyperspectral Image Classification Based on Non-Uniform Spatial-Spectral Kernels
    Borhani, Mostafa
    Ghassemian, Hassan
    2014 IRANIAN CONFERENCE ON INTELLIGENT SYSTEMS (ICIS), 2014,
  • [39] GPU IMPLEMENTATION OF ANT COLONY OPTIMIZATION ALGORITHM FOR ENDMEMBER EXTRACTION FROM HYPERSPECTRAL IMAGE
    Gao, Jianwei
    Gao, Lianru
    Sun, Xu
    Wu, Yuanfeng
    Zhang, Bing
    2012 4TH WORKSHOP ON HYPERSPECTRAL IMAGE AND SIGNAL PROCESSING (WHISPERS), 2012,
  • [40] Local Binary Patterns and Superpixel-Based Multiple Kernels for Hyperspectral Image Classification
    Huang, Wei
    Huang, Yao
    Wang, Hua
    Liu, Yan
    Shim, Hiuk Jae
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2020, 13 (13) : 4550 - 4563