GPU Implementation of Composite Kernels for Hyperspectral Image Classification

被引:16
|
作者
Wu, Zebin [1 ,2 ]
Liu, Jiafu [1 ]
Plaza, Antonio [2 ]
Li, Jun [3 ,4 ]
Wei, Zhihui [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Nanjing 210094, Peoples R China
[2] Univ Extremadura, Dept Technol Comp & Commun, Hyperspectral Comp Lab, Caceres 10003, Spain
[3] Sun Yat Sen Univ, Guangdong Prov Key Lab Urbanizat & Geosimulat, Guangzhou 510275, Guangdong, Peoples R China
[4] Sun Yat Sen Univ, Ctr Integrated Geog Informat Anal, Sch Geog & Planning, Guangzhou 510275, Guangdong, Peoples R China
基金
高等学校博士学科点专项科研基金; 中国国家自然科学基金;
关键词
Composite kernels; graphics processing units (GPUs); hyperspectral classification; support vector machines (SVMs);
D O I
10.1109/LGRS.2015.2441631
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
In this letter, we present an efficient parallel implementation of composite kernels in support vector machines (SVMs) for hyperspectral image (HSI) classification. Our implementation makes effective use of commodity graphics processing units (GPUs). Specifically, we port the calculation of composite kernels to GPUs, perform intensive computations based on NVidia's compute unified device architecture, and execute the rest of the operations related with control and small data calculations in the CPU. Our experimental results, conducted using real hyperspectral data sets and NVidia GPU platforms, indicate significant improvements in terms of computational effectiveness, achieving near-real-time performance of spatial-spectral HSI classification for the first time in the literature.
引用
收藏
页码:1973 / 1977
页数:5
相关论文
共 50 条
  • [21] GPU Implementation for Hyperspectral Image Analysis using Recursive Hierarchical Segmentation
    Hossam, Mahmoud A.
    Ebied, Hala M.
    Abdel-Aziz, Mohamed H.
    2012 SEVENTH INTERNATIONAL CONFERENCE ON COMPUTER ENGINEERING & SYSTEMS (ICCES'2012), 2012, : 195 - 200
  • [22] Hyperspectral image classification based on spatial and spectral kernels generation network
    Ma, Wenping
    Ma, Haoxiang
    Zhu, Hao
    Li, Yating
    Li, Longwei
    Jiao, Licheng
    Hou, Biao
    INFORMATION SCIENCES, 2021, 578 : 435 - 456
  • [23] Hyperspectral image classification based on compound kernels of support vector machine
    Cui, Yuyong
    Zeng, Zhiyuan
    Fu, Bitao
    PROCEEDINGS OF THE 8TH INTERNATIONAL SYMPOSIUM ON SPATIAL ACCURACY ASSESSMENT IN NATURAL RESOURCES AND ENVIRONMENTAL SCIENCES, VOL II: ACCURACY IN GEOMATICS, 2008, : 263 - 269
  • [24] Hyperspectral image classification based on compsite kernels support vector machine
    Li, X.-R. (lxr@zju.edu.cn), 2013, Zhejiang University (47):
  • [25] MULTIPLE COMPOSITE KERNEL LEARNING FOR HYPERSPECTRAL IMAGE CLASSIFICATION
    Du, Peijun
    Xia, Junshi
    Ghamisi, Pedram
    Iwasaki, Akira
    Benediktsson, Jon Atli
    2017 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2017, : 2223 - 2226
  • [26] Generalized Composite Kernel Framework for Hyperspectral Image Classification
    Li, Jun
    Marpu, Prashanth Reddy
    Plaza, Antonio
    Bioucas-Dias, Jose M.
    Benediktsson, Jon Atli
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2013, 51 (09): : 4816 - 4829
  • [27] Composite kernel learning network for hyperspectral image classification
    Wu, Zhe
    Liu, Jianjun
    Yang, Jinlong
    Xiao, Zhiyong
    Xiao, Liang
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2021, 42 (16) : 6068 - 6091
  • [28] Ideal Regularized Composite Kernel for Hyperspectral Image Classification
    Peng, Jiangtao
    Chen, Hong
    Zhou, Yicong
    Li, Luoqing
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2017, 10 (04) : 1563 - 1574
  • [29] Multi-scale Patch based Box Kernels for Hyperspectral Image Classification
    Peng, Jiangtao
    Zhou, Yicong
    Chen, C. L. Philip
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 3203 - 3208
  • [30] Support vector machines for hyperspectral image classification with spectral-based kernels
    Mercier, G
    Lennon, M
    IGARSS 2003: IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS I - VII, PROCEEDINGS: LEARNING FROM EARTH'S SHAPES AND SIZES, 2003, : 288 - 290