Overexpression of gma-MIR394a confers tolerance to drought in transgenic Arabidopsis thaliana

被引:74
|
作者
Ni, Zhiyong [1 ]
Hu, Zheng [1 ]
Jiang, Qiyan [1 ]
Zhang, Hui [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, Natl Key Facil Crop Gene Resources & Genet Improv, Beijing 100081, Peoples R China
基金
国家高技术研究发展计划(863计划);
关键词
Drought tolerance; F-box protein; gma-MIR394a; Soybean; STRESS-REGULATED MICRORNAS; SMALL RNAS; PLANTS; TARGETS; IDENTIFICATION; GENE; DEFICIENCY; EXPRESSION; MIRNAS;
D O I
10.1016/j.bbrc.2012.09.055
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
MicroRNAs, key posttranscriptional regulators of eukaryotic gene expression, play important roles in plant development and response to stress. In this study, a soybean gma-MIR394a gene was functionally characterized, especially with regard to its role in drought stress resistance. Expression analysis revealed that gma-MIR394a was expressed differentially in various soybean tissues and was induced by drought, high salinity, low temperature stress, and abscisic acid treatment in leaves. One target gene of gma-miR394a, Glyma08g11030, was predicted and verified using a modified 5' RLM-RACE (RNA ligase-mediated rapid amplification of 5' cDNA ends) assay. Overexpression of gma-MIR394a resulted in plants with lowered leaf water loss and enhanced drought tolerance. Furthermore, overexpression of gma-MIR394a in Arabidopsis reduced the transcript of an F-box gene (At1g27340) containing a miR394 complementary target site. These results suggest that the gma-MIR394a gene functions in positive modulation of drought stress tolerance and has potential applications in molecular breeding to enhance drought tolerance in crops. (C) 2012 Published by Elsevier Inc.
引用
收藏
页码:330 / 335
页数:6
相关论文
共 50 条
  • [31] Overexpression of the Wheat TaPsb28 Gene Enhances Drought Tolerance in Transgenic Arabidopsis
    Wang, Yuexia
    Zhang, Menghan
    Li, Xiaoyan
    Zhou, Ruixiang
    Xue, Xinyu
    Zhang, Jing
    Liu, Nana
    Xue, Ruili
    Qi, Xueli
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (06)
  • [32] Overexpression of the wheat NAC transcription factor TaSNAC4-3A gene confers drought tolerance in transgenic Arabidopsis
    Mei, Fangming
    Chen, Bin
    Li, Fangfang
    Zhang, Yifang
    Kang, Zhensheng
    Wang, Xiaojing
    Mao, Hude
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2021, 160 : 37 - 50
  • [33] MicroRNA miR394 regulates flowering time in Arabidopsis thaliana
    Bernardi, Yanel
    Agustina Ponso, Maria
    Belen, Federico
    Vegetti, Abelardo C.
    Dotto, Marcela C.
    PLANT CELL REPORTS, 2022, 41 (06) : 1375 - 1388
  • [34] Overexpression of a Rice Monosaccharide Transporter Gene (OsMST6) Confers Enhanced Tolerance to Drought and Salinity Stress in Arabidopsis thaliana
    Hossein Hosseini Monfared
    Jin Kiat Chew
    Parisa Azizi
    Gang-Ping Xue
    Su-Fang Ee
    Saeid Kadkhodaei
    Pouya Hedayati
    Ismanizan Ismail
    Zamri Zainal
    Plant Molecular Biology Reporter, 2020, 38 : 151 - 164
  • [35] Overexpression of a Camellia sinensis DREB transcription factor gene (CsDREB) increases salt and drought tolerance in transgenic Arabidopsis thaliana
    Mingle Wang
    Jing Zhuang
    Zhongwei Zou
    Qinghui Li
    Huahong Xin
    Xinghui Li
    Journal of Plant Biology, 2017, 60 : 452 - 461
  • [36] Overexpression of a carrot BCH gene, DcBCH1, improves tolerance to drought in Arabidopsis thaliana
    Li, Tong
    Liu, Jie-Xia
    Deng, Yuan-Jie
    Xu, Zhi-Sheng
    Xiong, Ai-Sheng
    BMC PLANT BIOLOGY, 2021, 21 (01)
  • [37] Overexpression of MuHSP70 gene from Macrotyloma uniflorum confers multiple abiotic stress tolerance in transgenic Arabidopsis thaliana
    Masand, Shikha
    Yadav, Sudesh Kumar
    MOLECULAR BIOLOGY REPORTS, 2016, 43 (02) : 53 - 64
  • [38] AtGBF3 confers tolerance to Arabidopsis thaliana against combined drought and Pseudomonas syringae stress
    Dixit, Sandeep Kumar
    Gupta, Aarti
    Fatima, Urooj
    Senthil-Kumar, Muthappa
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2019, 168
  • [39] Overexpression of AT14A confers tolerance to drought stress-induced oxidative damage in suspension cultured cells of Arabidopsis thaliana
    Wang, Lin
    He, Jie
    Ding, Haidong
    Liu, Hui
    Lu, Bing
    Liang, Jiansheng
    Wang, L.
    He, J.
    Ding, H. D.
    Liu, H.
    Lu, B.
    Liang, J. S.
    PROTOPLASMA, 2015, 252 (04) : 1111 - 1120
  • [40] HaASR1 gene cloned from a desert shrub, Haloxylon ammodendron, confers drought tolerance in transgenic Arabidopsis thaliana
    Gao, Huijuan
    Lu, Xinpei
    Ren, Wei
    Sun, Yunya
    Zhao, Qi
    Wang, Guangpeng
    Wang, Runjuan
    Wang, Yongping
    Zhang, Hong
    Wang, Suomin
    Meng, Laisheng
    Zhang, Jinlin
    ENVIRONMENTAL AND EXPERIMENTAL BOTANY, 2020, 180