Temperature dependence of CIGS and perovskite solar cell performance: an overview

被引:40
作者
Lin, Leqi [1 ]
Ravindra, N. M. [2 ]
机构
[1] New Jersey Inst Technol, Dept Civil & Environm Engn, Newark, NJ 07102 USA
[2] New Jersey Inst Technol, Interdisciplinary Program Mat Sci & Engn, Newark, NJ 07102 USA
来源
SN APPLIED SCIENCES | 2020年 / 2卷 / 08期
关键词
Solar cells; CIGS; Perovskite solar cells; Temperature dependence; DIFFUSION BARRIER LAYER; SUBSTRATE-TEMPERATURE; ELECTRICAL-PROPERTIES; EFFICIENCY; DEPOSITION; EMERGENCE; CU(IN; FILMS;
D O I
10.1007/s42452-020-3169-2
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
CIGS, with a tailorable direct band gap (of 1.04-1.68 eV), can serve as bottom cell with excellent band gap match with perovskite (1.6-2.3 eV) in the combined monolithic perovskite/CIGS tandem solar cell, that has the potential to exceed the Shockley-Queisser limit. Thus, an investigation of the operating temperature dependence of the performance of CIGS and perovskite solar cells (PSCs), in the temperature range of 80-380 K, based on studies in the literature, is presented. Besides the operating temperature, the influence of substrate temperature of CIGS solar cells, fabricated on soda-lime-glass, polyimide foil and stainless steel substrates are also investigated. The solar cell performance is assessed by considering several photovoltaic parameters such as short circuit current density (J(sc)), open circuit voltage (V-oc), fill factor and power conversion efficiency. By a detailed understanding of the dependence of solar cell parameters on temperature for CIGS solar cells and PSCs, with different characteristics or structures, it is anticipated that an effective pathway for the improvement in these cells, in adverse environments, can be accomplished.
引用
收藏
页数:12
相关论文
共 77 条
[1]   Temperature dependence of hole conductor free formamidinium lead iodide perovskite based solar cells [J].
Aharon, Sigalit ;
Dymshits, Alexander ;
Rotem, Amit ;
Etgar, Lioz .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (17) :9171-9178
[2]   Investigation of Al2O3 diffusion barrier layer fabricated by atomic layer deposition for flexible Cu(In,Ga)Se2 solar cells [J].
Bae, Dowon ;
Kwon, Sehan ;
Oh, Joonjae ;
Kim, Woo Kyoung ;
Park, Hyeonwook .
RENEWABLE ENERGY, 2013, 55 :62-68
[3]   Low-temperature processed meso-superstructured to thin-film perovskite solar cells [J].
Ball, James M. ;
Lee, Michael M. ;
Hey, Andrew ;
Snaith, Henry J. .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (06) :1739-1743
[4]  
Brenner TM, 2016, NAT REV MATER, V1, DOI 10.1038/natrevmats.2015.7
[5]   Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells [J].
Carron, Romain ;
Avancini, Enrico ;
Feurer, Thomas ;
Bissig, Benjamin ;
Losio, Paolo A. ;
Figi, Renato ;
Schreiner, Claudia ;
Burki, Melanie ;
Bourgeois, Emilie ;
Remes, Zdenek ;
Nesladek, Milos ;
Buecheler, Stephan ;
Tiwari, Ayodhya N. .
SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS, 2018, 19 (01) :396-410
[6]   Design and understanding of encapsulated perovskite solar cells to withstand temperature cycling [J].
Cheacharoen, Rongrong ;
Rolston, Nicholas ;
Harwood, Duncan ;
Bush, Kevin A. ;
Dauskardt, Reinhold H. ;
McGehee, Michael D. .
ENERGY & ENVIRONMENTAL SCIENCE, 2018, 11 (01) :144-150
[7]   Emergence of Hysteresis and Transient Ferroelectric Response in Organo-Lead Halide Perovskite Solar Cells [J].
Chen, Hsin-Wei ;
Sakai, Nobuya ;
Ikegami, Masashi ;
Miyasaka, Tsutomu .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2015, 6 (01) :164-169
[8]   Single-Crystal MAPbI3 Perovskite Solar Cells Exceeding 21% Power Conversion Efficiency [J].
Chen, Zhaolai ;
Turedi, Bekir ;
Alsalloum, Abdullah Y. ;
Yang, Chen ;
Zheng, Xiaopeng ;
Gereige, Issam ;
AlSaggaf, Ahmed ;
Mohammed, Omar F. ;
Bakr, Osman M. .
ACS ENERGY LETTERS, 2019, 4 (06) :1258-1259
[9]   Cu(In,Ga)Se2 solar cell grown on flexible polymer substrate with efficiency exceeding 17% [J].
Chirila, A. ;
Bloesch, P. ;
Seyrling, S. ;
Uhl, A. ;
Buecheler, S. ;
Pianezzi, F. ;
Fella, C. ;
Perrenoud, J. ;
Kranz, L. ;
Verma, R. ;
Guettler, D. ;
Nishiwaki, S. ;
Romanyuk, Y. E. ;
Bilger, G. ;
Bremaud, D. ;
Tiwari, A. N. .
PROGRESS IN PHOTOVOLTAICS, 2011, 19 (05) :560-564
[10]  
Chirila A, 2013, NAT MATER, V12, P1107, DOI [10.1038/NMAT3789, 10.1038/nmat3789]