Ripplocation in graphite nanoplatelets during sonication assisted liquid phase exfoliation

被引:30
作者
Alaferdov, A. V. [1 ]
Savu, R. [1 ]
Canesqui, M. A. [1 ]
Kopelevich, Y. V. [2 ]
da Silva, R. R. [2 ]
Rozhkova, N. N. [3 ]
Pavlov, D. A. [4 ]
Usov, Yu. V. [4 ]
de Trindade, G. M. [5 ]
Moshkalev, S. A. [1 ]
机构
[1] Univ Estadual Campinas, Ctr Semicond Components & Nanotechnol, BR-13083870 Campinas, SP, Brazil
[2] Univ Estadual Campinas, GlebWataghin Inst Phys, BR-13083859 Campinas, SP, Brazil
[3] Russian Acad Sci, Inst Geol, Karelian Res Ctr, Petrozavodsk, Russia
[4] Lobachevsky State Univ Nizhni Novgorod, Nizhnii Novgorod 603950, Russia
[5] Nacl Grafite Ltda, BR-35550000 Itapecerica, MG, Brazil
基金
巴西圣保罗研究基金会;
关键词
CARBON MATERIALS; GRAPHENE;
D O I
10.1016/j.carbon.2017.12.100
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Defects induced by liquid-phase exfoliation of graphite using sonication were studied. It was shown that localized impact by cavitation shock waves can produce bulk ripplocations and various types of dislocations in graphite nanoplatelets. Formation of ripples is more pronounced in large aspect (length/width) ratio platelets or nanobelts. Quasi-periodical ripple systems were observed in many nanobelts after sonication. Mechanism of formation of ripples and dislocations during sonication was proposed. Surprisingly, fast high-temperature processing was found to anneal most of defects. This is consistent with our observations that defects associated with ripplocations are strongly localized and thus can be fast annealed. (C) 2017 Elsevier Ltd. All rights reserved.
引用
收藏
页码:826 / 829
页数:4
相关论文
共 9 条
[1]   Size-controlled synthesis of graphite nanoflakes and multi-layer graphene by liquid phase exfoliation of natural graphite [J].
Alaferdov, A. V. ;
Gholamipour-Shirazi, A. ;
Canesqui, M. A. ;
Danilov, Yu. A. ;
Moshkalev, S. A. .
CARBON, 2014, 69 :525-535
[2]   Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies [J].
Cancado, L. G. ;
Jorio, A. ;
Martins Ferreira, E. H. ;
Stavale, F. ;
Achete, C. A. ;
Capaz, R. B. ;
Moutinho, M. V. O. ;
Lombardo, A. ;
Kulmala, T. S. ;
Ferrari, A. C. .
NANO LETTERS, 2011, 11 (08) :3190-3196
[3]   Possible 3D carbon structures as progressive intermediates in graphite to diamond phase transition [J].
Fayos, J .
JOURNAL OF SOLID STATE CHEMISTRY, 1999, 148 (02) :278-285
[4]   Evidence for Bulk Ripplocations in Layered Solids [J].
Gruber, Jacob ;
Lang, Andrew C. ;
Griggs, Justin ;
Taheri, Mitra L. ;
Tucker, Garritt J. ;
Barsoum, Michel W. .
SCIENTIFIC REPORTS, 2016, 6
[5]   CHARACTERIZATION OF CARBON MATERIALS WITH RAMAN MICROSPECTROMETRY [J].
LESPADE, P ;
MARCHAND, A ;
COUZI, M ;
CRUEGE, F .
CARBON, 1984, 22 (4-5) :375-385
[6]   X-ray diffraction patterns of graphite and turbostratic carbon [J].
Li, Z. Q. ;
Lu, C. J. ;
Xia, Z. P. ;
Zhou, Y. ;
Luo, Z. .
CARBON, 2007, 45 (08) :1686-1695
[7]   Cleavage and size reduction of graphite crystal using ultrasound radiation [J].
Los, Szymon ;
Duclaux, Laurent ;
Alvarez, Laurent ;
Hawelek, Lukasz ;
Duber, Stanislaw ;
Kempinski, Wojciech .
CARBON, 2013, 55 :53-61
[8]   Transmission electron microscopy studies on carbon materials prepared by mechanical milling [J].
Salver-Disma, F ;
Tarascon, JM ;
Clinard, C ;
Rouzaud, JN .
CARBON, 1999, 37 (12) :1941-1959
[9]   A review on mechanical exfoliation for the scalable production of graphene [J].
Yi, Min ;
Shen, Zhigang .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (22) :11700-11715