Multimodal Virtual Point 3D Detection

被引:0
|
作者
Yin, Tianwei [1 ]
Zhou, Xingyi [1 ]
Krahenbhul, Philipp [1 ]
机构
[1] UT Austin, Austin, TX 78712 USA
来源
ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 34 (NEURIPS 2021) | 2021年 / 34卷
基金
美国国家科学基金会;
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Lidar-based sensing drives current autonomous vehicles. Despite rapid progress, current Lidar sensors still lag two decades behind traditional color cameras in terms of resolution and cost. For autonomous driving, this means that large objects close to the sensors are easily visible, but far-away or small objects comprise only one measurement or two. This is an issue, especially when these objects turn out to be driving hazards. On the other hand, these same objects are clearly visible in onboard RGB sensors. In this work, we present an approach to seamlessly fuse RGB sensors into Lidar-based 3D recognition. Our approach takes a set of 2D detections to generate dense 3D virtual points to augment an otherwise sparse 3D point cloud. These virtual points naturally integrate into any standard Lidar-based 3D detectors along with regular Lidar measurements. The resulting multi-modal detector is simple and effective. Experimental results on the large-scale nuScenes dataset show that our framework improves a strong CenterPoint baseline by a significant 6:6 mAP, and outperforms competing fusion approaches. Code and more visualizations are available at https://tianweiy.github.io/mvp/.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] VirPNet: A Multimodal Virtual Point Generation Network for 3D Object Detection
    Wang, Lin
    Sun, Shiliang
    Zhao, Jing
    IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 : 10597 - 10609
  • [2] Virtual Sparse Convolution for Multimodal 3D Object Detection
    Wu, Hai
    Wen, Chenglu
    Shi, Shaoshuai
    Li, Xin
    Wang, Cheng
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 21653 - 21662
  • [3] Point-Voxel Fusion for Multimodal 3D Detection
    Wang, Ke
    Zhang, Zhichuang
    2022 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2022, : 1716 - 1719
  • [4] 3D Object Detection and Localization using Multimodal Point Pair Features
    Drost, Bertram
    Ilic, Slobodan
    SECOND JOINT 3DIM/3DPVT CONFERENCE: 3D IMAGING, MODELING, PROCESSING, VISUALIZATION & TRANSMISSION (3DIMPVT 2012), 2012, : 9 - 16
  • [5] Medical 3D Images in Multimodal Virtual Reality
    Prange, Alexander
    Barz, Michael
    Sonntag, Daniel
    COMPANION OF THE 23RD INTERNATIONAL CONFERENCE ON INTELLIGENT USER INTERFACES (IUI'18), 2018,
  • [6] A multimodal virtual reality interface for 3D interaction with VTK
    Arjan J. F. Kok
    Robert van Liere
    Knowledge and Information Systems, 2007, 13 : 197 - 219
  • [7] A multimodal virtual reality interface for 3D interaction with VTK
    Kok, Arjan J. F.
    van Liere, Robert
    KNOWLEDGE AND INFORMATION SYSTEMS, 2007, 13 (02) : 197 - 219
  • [8] Multimodal 3D Object Detection Method Based on Pseudo Point Cloud Feature Enhancement
    Kong D.-M.
    Li X.-W.
    Yang Q.-X.
    Jisuanji Xuebao/Chinese Journal of Computers, 2024, 47 (04): : 759 - 775
  • [9] Multimodal 3D Histogram for Moving Object Detection
    Mukherjee, Dibyendu
    Saha, Ashirbani
    Wu, Q. M. Jonathan
    Jiang, Wei
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 2397 - 2402
  • [10] VIRTUAL 3D (MUPAI VIRTUAL 3D)
    Zapatero Guillen, Daniel
    ARTE INDIVIDUO Y SOCIEDAD, 2011, 23 (01): : 73 - 79