Hermite-Hadamard Type Integral Inequalities for Functions Whose Second-Order Mixed Derivatives Are Coordinated (s,m)-P-Convex

被引:3
作者
Bai, Yu-Mei [1 ]
Wu, Shan-He [2 ]
Wu, Ying [1 ]
机构
[1] Inner Mongolia Univ Nationalities, Coll Math, Tongliao 028043, Inner Mongolia, Peoples R China
[2] Longyan Univ, Dept Math, Longyan 364012, Fujian, Peoples R China
关键词
CONVEX-FUNCTIONS;
D O I
10.1155/2018/1693075
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We establish some new Hermite-Hadamard type integral inequalities for functions whose second-order mixed derivatives are coordinated (s,m)-P-convex. An expression form of Hermite-Hadamard type integral inequalities via the beta function and the hypergeometric function is also presented. Our results provide a significant complement to the work of Wu et al. involving the Hermite-Hadamard type inequalities for coordinated (s,m)-P-convex functions in an earlier article.
引用
收藏
页数:7
相关论文
共 50 条
[21]   Conformable fractional Hermite-Hadamard type inequalities for functions whose derivatives are s-preinvex [J].
Merad, M. ;
Meftah, B. ;
Berkane, A. .
JOURNAL OF INTERDISCIPLINARY MATHEMATICS, 2024, 27 (03) :511-526
[22]   Hermite–Hadamard and Hermite–Hadamard–Fejer type inequalities for p-convex functions via conformable fractional integrals [J].
Naila Mehreen ;
Matloob Anwar .
Journal of Inequalities and Applications, 2020
[23]   Fractional Integral Inequalities of Hermite-Hadamard Type for Convex Functions With Respect to a Monotone Function [J].
Mohammed, Pshtiwan Othman .
FILOMAT, 2020, 34 (07) :2401-2411
[24]   Inequalities of Hermite-Hadamard type for AH-convex functions [J].
Dragomir, Sever S. .
STUDIA UNIVERSITATIS BABES-BOLYAI MATHEMATICA, 2016, 61 (04) :489-502
[25]   Inequalities of Hermite-Hadamard type for HH-convex functions [J].
Dragomir, S. S. .
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2018, 22 (02) :179-190
[26]   Hermite-Hadamard Type Inequalities and Convex Functions in Signal Processing [J].
Sun, Wenfeng ;
He, Xiaowei .
IEEE ACCESS, 2024, 12 :92906-92918
[27]   (p, q)-Hermite-Hadamard Inequalities for Double Integral and (p, q)-Differentiable Convex Functions [J].
Prabseang, Julalak ;
Nonlaopon, Kamsing ;
Tariboon, Jessada .
AXIOMS, 2019, 8 (02)
[28]   Fractional Hermite-Hadamard Integral Inequalities for a New Class of Convex Functions [J].
Mohammed, Pshtiwan Othman ;
Abdeljawad, Thabet ;
Zeng, Shengda ;
Kashuri, Artion .
SYMMETRY-BASEL, 2020, 12 (09)
[29]   New discrete inequalities of Hermite-Hadamard type for convex functions [J].
Mohammed, Pshtiwan Othman ;
Abdeljawad, Thabet ;
Alqudah, Manar A. ;
Jarad, Fahd .
ADVANCES IN DIFFERENCE EQUATIONS, 2021, 2021 (01)
[30]   FRACTIONAL TYPE HERMITE-HADAMARD INEQUALITIES FOR CONVEX AND AG(Log)-CONVEX FUNCTIONS [J].
Luo, Zijian ;
Wang, JinRong .
FACTA UNIVERSITATIS-SERIES MATHEMATICS AND INFORMATICS, 2015, 30 (05) :649-662