A SEMIPARAMETRIC MIXTURE METHOD FOR LOCAL FALSE DISCOVERY RATE ESTIMATION FROM MULTIPLE STUDIES

被引:5
作者
Jeong, Seok-Oh [1 ]
Choi, Dongseok [2 ]
Jang, Woncheol [3 ]
机构
[1] Hankuk Univ Foreign Studies, Dept Stat, Seoul, South Korea
[2] Oregon Hlth & Sci Univ, OHSU PSU Sch Publ Hlth, Portland, OR 97201 USA
[3] Seoul Natl Univ, Dept Stat, Seoul, South Korea
基金
新加坡国家研究基金会;
关键词
False discovery rate; log concave; microarray; mixture model; next generation sequencing data; MAXIMUM-LIKELIHOOD-ESTIMATION; LOG-CONCAVE DENSITY; GENE-EXPRESSION; 2-COMPONENT MIXTURE; EMPIRICAL BAYES; INFERENCE; GRANULOMATOSIS; POLYANGIITIS; PACKAGE;
D O I
10.1214/20-AOAS1341
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Antineutrophil cytoplasmic antibody associated vasculitis (AAV) is extremely heterogeneous in clinical presentation and involves multiple organ systems. While the clinical presentation of AAV is diverse, we hypothesized that all AAV share common pathways and tested the hypothesis based on three different microarray studies of peripheral leukocytes, sinus and orbital inflammation disease. For the hypothesis testing we developed a two-component semiparametric mixture model to estimate the local false discovery rates from the p-values of three studies. The two pillars of the proposed approach are Efron's empirical null principle and log-concave density estimation for the alternative distribution. Our method outperforms other existing methods, in particular when the proportion of null is not that high. It is robust against the misspecification of alternative distribution. A unique feature of our method is that it can be extended to compute the local false discovery rates by combining multiple lists of p-values.
引用
收藏
页码:1242 / 1257
页数:16
相关论文
共 50 条
  • [21] Empirical Bayes shrinkage and false discovery rate estimation, allowing for unwanted variation
    Gerard, David
    Stephens, Matthew
    BIOSTATISTICS, 2020, 21 (01) : 15 - 32
  • [22] Normalization, testing, and false discovery rate estimation for RNA-sequencing data
    Li, Jun
    Witten, Daniela M.
    Johnstone, Iain M.
    Tibshirani, Robert
    BIOSTATISTICS, 2012, 13 (03) : 523 - 538
  • [23] False Discovery Rate Estimation for Stability Selection: Application to Genome-Wide Association Studies
    Ahmed, Ismail
    Hartikainen, Anna-Liisa
    Jarvelin, Marjo-Riitta
    Richardson, Sylvia
    STATISTICAL APPLICATIONS IN GENETICS AND MOLECULAR BIOLOGY, 2011, 10 (01)
  • [24] Kerfdr: a semi-parametric kernel-based approach to local false discovery rate estimation
    Mickael Guedj
    Stephane Robin
    Alain Celisse
    Gregory Nuel
    BMC Bioinformatics, 10
  • [25] GAUSSIAN GRAPHICAL MODEL ESTIMATION WITH FALSE DISCOVERY RATE CONTROL
    Liu, Weidong
    ANNALS OF STATISTICS, 2013, 41 (06) : 2948 - 2978
  • [26] Improved False Discovery Rate Estimation Procedure for Shotgun Proteomics
    Keich, Uri
    Kertesz-Farkas, Attila
    Noble, William Stafford
    JOURNAL OF PROTEOME RESEARCH, 2015, 14 (08) : 3148 - 3161
  • [27] Finite skew-mixture models for estimation of positive false discovery rates
    Bean, Gordon J.
    Dimarco, Elizabeth A.
    Mercer, Laina D.
    Thayer, Laura K.
    Roy, Anindya
    Ghosal, Subhashis
    STATISTICAL METHODOLOGY, 2013, 10 (01) : 46 - 57
  • [28] A statistical method for the conservative adjustment of false discovery rate (q-value)
    Lai, Yinglei
    BMC BIOINFORMATICS, 2017, 18
  • [29] Empirical Bayes estimation of posterior probabilities of enrichment: A comparative study of five estimators of the local false discovery rate
    Zhenyu Yang
    Zuojing Li
    David R Bickel
    BMC Bioinformatics, 14
  • [30] OPTIMAL FALSE DISCOVERY RATE CONTROL FOR LARGE SCALE MULTIPLE TESTING WITH AUXILIARY INFORMATION
    Cao, Hongyuan
    Chen, Jun
    Zhang, Xianyang
    ANNALS OF STATISTICS, 2022, 50 (02) : 807 - 857