共 50 条
Lactic acid production from dining-hall food waste by Lactobacillus plantarum using response surface methodology
被引:19
|作者:
Ye, Zhi-Long
[1
]
Lu, Min
[2
]
Zheng, Yan
[1
]
Li, Ya-Hong
[1
]
Cai, Wei-Min
[1
]
机构:
[1] Shanghai Jiao Tong Univ, Sch Environm Sci & Engn, Shanghai 200240, Peoples R China
[2] Xiamen Univ, Environm Sci Res Ctr, Xiamen 361005, Fujian, Peoples R China
关键词:
lactic acid;
simultaneous saccharification and fermentation;
response surface methodology;
food waste;
Lactobacillis plantartum;
D O I:
10.1002/jctb.1968
中图分类号:
Q81 [生物工程学(生物技术)];
Q93 [微生物学];
学科分类号:
071005 ;
0836 ;
090102 ;
100705 ;
摘要:
BACKGROUND: Food waste generally has a high starch content and is rich in nutritional compounds, including lipids and proteins. It therefore represents a potential renewable resource. In this study, dining-hall food waste was used as a substrate for lactic acid production, and response surface methodology was employed to optimise the fermentation conditions. RESULTS: Lactic acid biosynthesis was significantly affected by the interaction of protease and temperature. Protease, temperature and CaCO3 had significant linear effects on lactic acid production, while alpha-amylase and yeast extract had insignificant effects. The optimal conditions were found to be an a-amylase activity of 13.86 U g(-1) dried food waste, a protease activity of 2.12 U g(-1) dried food waste, a temperature of 29.31 degrees C and a CaCO3 concentration of 62.67 g L-1, which resulted in a maximum lactic acid concentration of 98.51 g L-1 (88.75% yield). An increase in inoculum size would be appropriate for accelerating the depletion of initial soluble carbohydrate to enhance the efficiency of alpha-amylase in dining-hall food waste fermentation. CONCLUSION: A suitable regression model for lactic acid production was developed based on the experimental results. Dining-hall food waste was found to be a good substrate for lactic acid fermentation with high product yield and without nutrient supplementation. (C) 2008 Society of Chemical Industry
引用
收藏
页码:1541 / 1550
页数:10
相关论文