Intercomparison and evaluation of global aerosol microphysical properties among AeroCom models of a range of complexity

被引:115
作者
Mann, G. W. [1 ,2 ]
Carslaw, K. S. [2 ]
Reddington, C. L. [2 ]
Pringle, K. J. [2 ,5 ]
Schulz, M. [3 ]
Asmi, A. [4 ]
Spracklen, D. V. [2 ]
Ridley, D. A. [2 ,6 ]
Woodhouse, M. T. [2 ,25 ]
Lee, L. A. [2 ]
Zhang, K. [7 ,8 ]
Ghan, S. J. [8 ]
Easter, R. C. [8 ]
Liu, X. [37 ]
Stier, P. [9 ]
Lee, Y. H. [10 ,13 ]
Adams, P. J. [10 ]
Tost, H. [5 ,32 ]
Lelieveld, J. [5 ,12 ]
Bauer, S. E. [11 ,13 ]
Tsigaridis, K. [11 ,13 ]
van Noije, T. P. C. [14 ]
Strunk, A. [14 ]
Vignati, E. [15 ]
Bellouin, N. [16 ]
Dalvi, M. [17 ]
Johnson, C. E. [17 ]
Bergman, T. [18 ]
Kokkola, H. [18 ]
von Salzen, K. [19 ]
Yu, F. [20 ]
Luo, G. [20 ]
Petzold, A. [21 ,33 ]
Heintzenberg, J. [22 ]
Clarke, A. [23 ]
Ogren, A. [24 ]
Gras, J. [25 ]
Baltensperger, U. [26 ]
Kaminski, U. [27 ]
Jennings, S. G. [28 ]
O'Dowd, C. D. [28 ]
Harrison, R. M. [29 ,34 ]
Beddows, D. C. S. [29 ]
Kulmala, M. [30 ]
Viisanen, Y. [4 ]
Ulevicius, V. [31 ]
Mihalopoulos, N. [35 ]
Zdimal, V. [36 ]
Fiebig, M. [38 ]
Hansson, H-C [39 ]
机构
[1] Univ Leeds, Natl Ctr Atmospher Sci, Leeds, W Yorkshire, England
[2] Univ Leeds, Sch Earth & Environm, Leeds, W Yorkshire, England
[3] Norwegian Meteorol Inst, Oslo, Norway
[4] Univ Helsinki, Helsinki, Finland
[5] Max Planck Inst Chem, D-55128 Mainz, Germany
[6] MIT, Cambridge, MA 02139 USA
[7] Max Planck Inst Meteorol, D-20146 Hamburg, Germany
[8] Pacific NW Natl Lab, Richland, WA 99352 USA
[9] Univ Oxford, Dept Phys, Oxford, England
[10] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
[11] Columbia Univ, Ctr Climate Syst Res, New York, NY USA
[12] Cyprus Inst, Nicosia, Cyprus
[13] NASA, Goddard Inst Space Studies, New York, NY 10025 USA
[14] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands
[15] EU Joint Res Ctr JRC, Ispra, Italy
[16] Univ Reading, Dept Meteorol, Reading, Berks, England
[17] Met Off Hadley Ctr, Exeter, Devon, England
[18] Finnish Meteorol Inst, Kuopio Unit, Kuopio, Finland
[19] Environm Canada, Canadian Ctr Climate Modelling & Anal, Gatineau, PQ, Canada
[20] SUNY Albany, Dept Earth & Atmospher Sci, Albany, NY 12222 USA
[21] DLR, Inst Atmospher Phys, Oberpfaffenhofen, Germany
[22] Leibniz Inst Tropospher Res, Leipzig, Germany
[23] Univ Hawaii, Dept Oceanog, Honolulu, HI 96822 USA
[24] NOAA, Earth Syst Res Lab, Boulder, CO USA
[25] CSIRO Marine & Atmospher Res, Aspendale, Vic, Australia
[26] Paul Scherrer Inst, Villigen, Switzerland
[27] Deutsch Wetterdienst DWD, Offenbach, Germany
[28] Natl Univ Ireland Galway, Galway, Ireland
[29] Univ Birmingham, Natl Ctr Atmospher Sci, Birmingham, W Midlands, England
[30] Univ Helsinki, Dept Phys, Helsinki, Finland
[31] Ctr Phys Sci & Technol, Vilnius, Lithuania
[32] Johannes Gutenberg Univ Mainz, Inst Phys Atmosphere, D-55122 Mainz, Germany
[33] Forschungszentrum Julich, IEK Troposphere 8, D-52425 Julich, Germany
[34] King Abdulaziz Univ, Dept Environm Sci, Jeddah 21589, Saudi Arabia
[35] Univ Crete, Dept Chem, Iraklion, Greece
[36] Acad Sci Czech Republ, Inst Chem Proc Fundamentals, CR-16502 Prague, Czech Republic
[37] Univ Wyoming, Dept Atmospher Sci, Laramie, WY 82071 USA
[38] Norwegian Inst Air Res NILU, Dept Atmospher & Climate Res, Oslo, Norway
[39] Stockholm Univ, Dept Appl Environm Sci, Stockholm, Sweden
[40] Lund Univ, Dept Phys, S-22362 Lund, Sweden
[41] Netherlands Org Appl Sci Res TNO, Utrecht, Netherlands
基金
欧洲研究理事会; 英国自然环境研究理事会;
关键词
CLOUD CONDENSATION NUCLEI; MARINE BOUNDARY-LAYER; PARTICLE NUMBER CONCENTRATIONS; OFF-LINE MODEL; SIZE DISTRIBUTIONS; BLACK CARBON; CLIMATE MODEL; ATMOSPHERIC AEROSOL; OPTICAL-PROPERTIES; MIXING STATE;
D O I
10.5194/acp-14-4679-2014
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Many of the next generation of global climate models will include aerosol schemes which explicitly simulate the microphysical processes that determine the particle size distribution. These models enable aerosol optical properties and cloud condensation nuclei (CCN) concentrations to be determined by fundamental aerosol processes, which should lead to a more physically based simulation of aerosol direct and indirect radiative forcings. This study examines the global variation in particle size distribution simulated by 12 global aerosol microphysics models to quantify model diversity and to identify any common biases against observations. Evaluation against size distribution measurements from a new European network of aerosol supersites shows that the mean model agrees quite well with the observations at many sites on the annual mean, but there are some seasonal biases common to many sites. In particular, at many of these European sites, the accumulation mode number concentration is biased low during winter and Aitken mode concentrations tend to be overestimated in winter and underestimated in summer. At high northern latitudes, the models strongly underpredict Aitken and accumulation particle concentrations compared to the measurements, consistent with previous studies that have highlighted the poor performance of global aerosol models in the Arctic. In the marine boundary layer, the models capture the observed meridional variation in the size distribution, which is dominated by the Aitken mode at high latitudes, with an increasing concentration of accumulation particles with decreasing latitude. Considering vertical profiles, the models reproduce the observed peak in total particle concentrations in the upper troposphere due to new particle formation, although modelled peak concentrations tend to be biased high over Europe. Overall, the multimodel-mean data set simulates the global variation of the particle size distribution with a good degree of skill, suggesting that most of the individual global aerosol microphysics models are performing well, although the large model diversity indicates that some models are in poor agreement with the observations. Further work is required to better constrain size-resolved primary and secondary particle number sources, and an improved understanding of nucleation and growth (e. g. the role of nitrate and secondary organics) will improve the fidelity of simulated particle size distributions.
引用
收藏
页码:4679 / 4713
页数:35
相关论文
共 160 条
[1]   A parameterization of aerosol activation 2. Multiple aerosol types [J].
Abdul-Razzak, H ;
Ghan, SJ .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2000, 105 (D5) :6837-6844
[2]   Global concentrations of tropospheric sulfate, nitrate, and ammonium aerosol simulated in a general circulation model [J].
Adams, PJ ;
Seinfeld, JH ;
Koch, DM .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1999, 104 (D11) :13791-13823
[3]   Strong present-day aerosol cooling implies a hot future [J].
Andreae, MO ;
Jones, CD ;
Cox, PM .
NATURE, 2005, 435 (7046) :1187-1190
[4]   A time-averaged inventory of subaerial volcanic sulfur emissions [J].
Andres, RJ ;
Kasgnoc, AD .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 1998, 103 (D19) :25251-25261
[5]   MADE-in: a new aerosol microphysics submodel for global simulation of insoluble particles and their mixing state [J].
Aquila, V. ;
Hendricks, J. ;
Lauer, A. ;
Riemer, N. ;
Vogel, H. ;
Baumgardner, D. ;
Minikin, A. ;
Petzold, A. ;
Schwarz, J. P. ;
Spackman, J. R. ;
Weinzierl, B. ;
Righi, M. ;
Dall'Amico, M. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2011, 4 (02) :325-355
[6]   Aerosol decadal trends - Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations [J].
Asmi, A. ;
Coen, M. Collaud ;
Ogren, J. A. ;
Andrews, E. ;
Sheridan, P. ;
Jefferson, A. ;
Weingartner, E. ;
Baltensperger, U. ;
Bukowiecki, N. ;
Lihavainen, H. ;
Kivekas, N. ;
Asmi, E. ;
Aalto, P. P. ;
Kulmala, M. ;
Wiedensohler, A. ;
Birmili, W. ;
Hamed, A. ;
O'Dowd, C. ;
Jennings, S. G. ;
Weller, R. ;
Flentje, H. ;
Fjaeraa, A. M. ;
Fiebig, M. ;
Myhre, C. L. ;
Hallar, A. G. ;
Swietlicki, E. ;
Kristensson, A. ;
Laj, P. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2013, 13 (02) :895-916
[7]   Number size distributions and seasonality of submicron particles in Europe 2008-2009 [J].
Asmi, A. ;
Wiedensohler, A. ;
Laj, P. ;
Fjaeraa, A. -M. ;
Sellegri, K. ;
Birmili, W. ;
Weingartner, E. ;
Baltensperger, U. ;
Zdimal, V. ;
Zikova, N. ;
Putaud, J. -P. ;
Marinoni, A. ;
Tunved, P. ;
Hansson, H. -C. ;
Fiebig, M. ;
Kivekas, N. ;
Lihavainen, H. ;
Asmi, E. ;
Ulevicius, V. ;
Aalto, P. P. ;
Swietlicki, E. ;
Kristensson, A. ;
Mihalopoulos, N. ;
Kalivitis, N. ;
Kalapov, I. ;
Kiss, G. ;
de Leeuw, G. ;
Henzing, B. ;
Harrison, R. M. ;
Beddows, D. ;
O'Dowd, C. ;
Jennings, S. G. ;
Flentje, H. ;
Weinhold, K. ;
Meinhardt, F. ;
Ries, L. ;
Kulmala, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2011, 11 (11) :5505-5538
[8]   Hygroscopicity and chemical composition of Antarctic sub-micrometre aerosol particles and observations of new particle formation [J].
Asmi, E. ;
Frey, A. ;
Virkkula, A. ;
Ehn, M. ;
Manninen, H. E. ;
Timonen, H. ;
Tolonen-Kivimaki, O. ;
Aurela, M. ;
Hillamo, R. ;
Kulmala, M. .
ATMOSPHERIC CHEMISTRY AND PHYSICS, 2010, 10 (09) :4253-4271
[9]   SEASONAL RELATIONSHIP BETWEEN CLOUD CONDENSATION NUCLEI AND AEROSOL METHANESULFONATE IN MARINE AIR [J].
AYERS, GP ;
GRAS, JL .
NATURE, 1991, 353 (6347) :834-835
[10]   A comparison of large-scale atmospheric sulphate aerosol models (COSAM):: overview and highlights [J].
Barrie, LA ;
Yi, Y ;
Leaitch, WR ;
Lohmann, U ;
Kasibhatla, P ;
Roelofs, GJ ;
Wilson, J ;
McGovern, F ;
Benkovitz, C ;
Mélières, MA ;
Law, K ;
Prospero, J ;
Kritz, M ;
Bergmann, D ;
Bridgeman, C ;
Chin, M ;
Christensen, J ;
Easter, R ;
Feichter, J ;
Land, C ;
Jeuken, A ;
Kjellström, E ;
Koch, D ;
Rasch, P .
TELLUS SERIES B-CHEMICAL AND PHYSICAL METEOROLOGY, 2001, 53 (05) :615-645